dc.contributor |
John Lott, Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA, e-mail: lott@math.lsa.umich.edu, US, |
|
dc.contributor |
Ann Arbor |
|
dc.creator |
Lott, John |
|
dc.date |
2006-09-08T19:42:00Z |
|
dc.date |
2006-09-08T19:42:00Z |
|
dc.date |
1997-03 |
|
dc.date.accessioned |
2022-05-19T10:34:32Z |
|
dc.date.available |
2022-05-19T10:34:32Z |
|
dc.identifier |
Lott, J.; (1997). "L2-Cohomology of geometrically infinite hyperbolic 3-manifolds." Geometric and Functional Analysis 7(1): 81-119. <http://hdl.handle.net/2027.42/41846> |
|
dc.identifier |
1016-443X |
|
dc.identifier |
https://hdl.handle.net/2027.42/41846 |
|
dc.identifier |
http://dx.doi.org/10.1007/PL00001617 |
|
dc.identifier |
Geometric and Functional Analysis |
|
dc.identifier.uri |
http://localhost:8080/xmlui/handle/CUHPOERS/100238 |
|
dc.description |
We give results on the following questions about a topologically tame hyperbolic 3-manifold M :¶1. Does M have nonzero square-integrable harmonic 1-forms?¶2. Does zero lie in the spectrum of the Laplacian acting on ? |
|
dc.description |
Peer Reviewed |
|
dc.description |
http://deepblue.lib.umich.edu/bitstream/2027.42/41846/1/39-7-1-81_70070081.pdf |
|
dc.format |
565361 bytes |
|
dc.format |
3115 bytes |
|
dc.format |
application/pdf |
|
dc.format |
text/plain |
|
dc.format |
application/pdf |
|
dc.language |
en_US |
|
dc.publisher |
Birkhäuser Verlag; Birkhäuser Verlag, Basel, ; Springer Science+Business Media |
|
dc.subject |
Legacy |
|
dc.subject |
Mathematics |
|
dc.subject |
Science |
|
dc.title |
L2-Cohomology of geometrically infinite hyperbolic 3-manifolds |
|
dc.type |
Article |
|