dc.creator |
Morrison, Robert J. |
|
dc.creator |
Nasser, Hassan B. |
|
dc.creator |
Kashlan, Khaled N. |
|
dc.creator |
Zopf, David A. |
|
dc.creator |
Milner, Derek J. |
|
dc.creator |
Flanangan, Colleen L. |
|
dc.creator |
Wheeler, Matthew B. |
|
dc.creator |
Green, Glenn E. |
|
dc.creator |
Hollister, Scott J. |
|
dc.date |
2018-08-13T18:48:27Z |
|
dc.date |
2019-09-04T20:15:38Z |
|
dc.date |
2018-07 |
|
dc.date.accessioned |
2022-05-19T10:34:32Z |
|
dc.date.available |
2022-05-19T10:34:32Z |
|
dc.identifier |
Morrison, Robert J.; Nasser, Hassan B.; Kashlan, Khaled N.; Zopf, David A.; Milner, Derek J.; Flanangan, Colleen L.; Wheeler, Matthew B.; Green, Glenn E.; Hollister, Scott J. (2018). "Co‐culture of adipose‐derived stem cells and chondrocytes on three‐dimensionally printed bioscaffolds for craniofacial cartilage engineering." The Laryngoscope 128(7): E251-E257. |
|
dc.identifier |
0023-852X |
|
dc.identifier |
1531-4995 |
|
dc.identifier |
https://hdl.handle.net/2027.42/145213 |
|
dc.identifier |
10.1002/lary.27200 |
|
dc.identifier |
The Laryngoscope |
|
dc.identifier |
Kusuhara H, Isogai N, Enjo M, et al. Tissue engineering a model for the human ear: assessment of size, shape, morphology, and gene expression following seeding of different chondrocytes. Wound Repair Regen 2009; 17: 136 – 146. |
|
dc.identifier |
Zopf DA, Mitsak AG, Flanagan CL, Wheeler MB, Green GE, Hollister SJ. Computer aided‐designed, 3‐dimensionally printed porous tissue bioscaffolds for craniofacial soft tissue reconstruction. Otolaryngol Head Neck Surg 2015; 152: 57 – 62. |
|
dc.identifier |
Hollister SJ, Levy RA, Chu TMJ, et al. An image‐based approach to design and manufacture craniofacial scaffolds. Int J Oral Maxillofac Surg 2000; 29: 67 – 71. |
|
dc.identifier |
Hollister SJ, Maddox RD, Taboas JM, et al. Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials 2002; 23: 4095 – 4103. |
|
dc.identifier |
Lin CY, Kikuchi N, Hollister SJ. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity. J Biomech 2004; 37: 623 – 636. |
|
dc.identifier |
Hollister SJ, Lin CY, Saito E, et al. Engineering craniofacial scaffolds. Orthod Craniofac Res 2002; 8: 162 – 173. |
|
dc.identifier |
Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater 2005; 4: 518 – 524. |
|
dc.identifier |
Hollister SJ, Lin CY. Computational design of tissue engineering scaffolds. Comput Methods Appl Mech Eng 2005; 196: 2991 – 2998. |
|
dc.identifier |
Kang H, Lin CY, Hollister SJ. Topology optimization of three dimensional tissue engineering scaffold architectures for prescribed bulk modulus and diffusivity. Struct Multidiscipl Optim 2010; 42: 633 – 644. |
|
dc.identifier |
Partee B, Hollister SJ, Das S. Selective laser sintering process optimization for layered manufacturing of CAPA 6501 polycaprolactone bone tissue engineering scaffolds. J Manuf Sci Eng 2006; 128: 531 – 540. |
|
dc.identifier |
Kim D, Monaco E, Maki A, et al. Morphologic and transcriptomic comparison of adipose‐ and bone‐marrow‐derived porcine stem cells cultured in alginate hydrogels. Cell Tissue Res 2010; 341: 359 – 370. |
|
dc.identifier |
Herzog KK, Milner DJ, Johnson SJ, Wheeler MB. Chondrogenic potential of porcine adipose‐derived stem cells, chondrocytes, periosteal cells, and fibroblasts in a pellet culture system. Reprod Fertil Dev 2014; 27: 253. |
|
dc.identifier |
Liao E, Yaszemski M, Krebsbach PH, Hollister SJ. Tissue engineered cartilage constructs using composite hyaluronic acid/collagen I hydrogels and designed poly(propylene) fumarate scaffolds. Tissue Eng 2007; 13: 537 – 550. |
|
dc.identifier |
Zhou LI, Pomerantseva EK, Bassett CM, et al. Engineering ear constructs with a composite scaffold to maintain dimensions. Tissue Eng Part A 2011; 17: 1573 – 1581. |
|
dc.identifier |
Xue JB, Feng R, Zheng Y, et al. Engineering earshaped cartilage using electrospun fibrous membranes of gelatin/polycaprolactone. Biomaterials 2013; 34: 2624 – 2631. |
|
dc.identifier |
Ruszymah BH, Chua KH, Mazlyzam AL, Aminuddin BS. Formation of tissue engineered composite construct of cartilage and skin using high density polyethylene as inner scaffold in the shape of human helix. Int J Pediatr Otorhinolaryngol 2011; 75: 805 – 810. |
|
dc.identifier |
Yanaga H, Imai K, Fujimoto T, Yanaga K. Generating ears from cultured autologous auricular chondrocytes by using two‐stage implantation in treatment of microtia. Plast Reconstr Surg 2009; 124: 817 – 825. |
|
dc.identifier |
Von Der Mark K, Gauss V, Von Der Mark H, Mueller P. Relationship between cell shape and type of collagen synthesised as chondrocytes lose their cartilage phenotype in culture. Nature 1977; 267: 531 – 532. |
|
dc.identifier |
Tsutsumi S, Shimazu A, Miyazaki K, et al. Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF. Biochem Biophys Res Commun 2011; 288: 413 – 419. |
|
dc.identifier |
Martin I, Shastri VP, Padera RF, et al. Selective differentiation of mammalian bone marrow stromal cells cultured on three‐dimensional polymer foams. J Biomed Mater Res 2001; 55: 229 – 235. |
|
dc.identifier |
Hwang NS, Elisseeff J. Application of stem cells for articular cartilage regeneration. J Knee Surg 2009; 22: 60 |
|
dc.identifier |
Hickok NJ, Haas AR, Tuan RS. Regulation of chondrocyte differentiation and maturation. Microsc Res Tech 1998; 43: 174 – 190. |
|
dc.identifier |
Merceron C, Vinatier C, Portron S, et al. Differential effects of hypoxia on osteochondrogenic potential of human adipose‐derived stem cells. Am J Physiol Cell Physiol 2010; 298: C355 – C364. |
|
dc.identifier |
Liu X, Sun H, Yan D, et al. In vivo ectopic chondrogenesis of BMSCs directed by mature chondrocytes. Biomaterials 2010; 31: 9406 – 9414. |
|
dc.identifier |
Keller B, Yang T, Munivez E, et al. Interaction of TGFbeta and BMP signaling pathways during chondrogenesis. PLoS One 2011; 6: 316421. |
|
dc.identifier |
Kim JS, Ryoo ZY, Chun JS. Cytokine‐like (Cytl1) regulates the chondrogenesis of mesenchymal cells. J Biol Chem 2007; 282: 29359 – 29367. |
|
dc.identifier |
Choi YS, Lim SM, Shin HC, et al. Chondrogenesis of human periostium‐derived progenitor cells in atelocollagen. Biotechnol Lett 2007; 29: 323 – 329. |
|
dc.identifier |
Mo XT, Guo SC, Xie HQ, et al. Variations in the ratios of co‐cultured mesenchymal stem cells and chondrocytes regulate the expression of cartilaginous and osseous phenotype in alginate constructs. Bone 2009; 45: 42 – 51. |
|
dc.identifier |
Zopf DA, Morrison RJ, Flanagan CL, Mitsak AG, Green GE, Hollister SJ. Surface area effects on chondrogenic potential of 3‐dimensionally printed porous tissue bioscaffolds for auricular reconstruction. In Proceedings of Combined Otolaryngology Spring Meetings, The Triological Society, American Society of Pediatric Otolaryngology Section, Las Vegas, NV, May 16, 2014. |
|
dc.identifier |
Goh BS, Che Omar SN, Ubaidah MA, Saim L, Sulaiman S, Chua KH. Chondrogenesis of human adipose derived stem cells for future microtia repair using co‐culture technique. Acta Otolaryngol 2017; 137: 432 – 441. |
|
dc.identifier |
Strioga M, Viswanathan S, Darinskas A, et al. Same or not the same? Comparison of adipose tissue‐derived versus bone marrow‐derived mesenchymal stem and stromal cells. Stem Cells Dev 2012; 21: 2724 – 2752. |
|
dc.identifier |
Bichara DA, O’Sullivan NA, Pomerantseva I, et al. The tissue‐engineered auricle: past, present, and future. Tissue Eng Part B Rev 2012; 18: 51 – 61. |
|
dc.identifier |
Bauer B. Reconstruction of microtia. Plast Reconstr Surg 2009; 124: 14e – 26e. |
|
dc.identifier |
Wilkes GH, Wong J, Guilfoyle R. Microtia reconstruction. Plast Reconstr Surg 2014; 134: 464 – 479. |
|
dc.identifier |
Romo T 3rd, Presti PM, Yalamanchili HR. Medpor alternative for microtia repair. Facial Plast Surg Clin North Am 2006; 14: 129 – 136, vi. |
|
dc.identifier |
Wellisz T. Clinical experience with the Medpor porous polyethylene implant. Aesthetic Plast Surg 1993; 17: 339 – 344. |
|
dc.identifier |
Isogai N, Kusuhara H, Ikada Y, et al. Comparison of different chondrocytes for use in tissue engineering of cartilage model structures. Tissue Eng 2006; 12: 691 – 703. |
|
dc.identifier |
van Osch GJ, van der Veen SW, Verwoerd‐Verhoef HL. In vitro redifferentiation of culture‐expanded rabbit and human auricular chondrocytes for cartilage reconstruction. Plast Reconstr Surg 2001; 107: 433 – 440. |
|
dc.identifier |
Vacanti CA, Cima LG, Ratkowski D, Upton J, Vacanti JP. Tissue engineered growth of new cartilage in the shape of a human ear using synthetic‐polymers seeded with chondrocytes. Mater Res Soc Symp Proc 1991; 252: 374. |
|
dc.identifier |
Shieh SJ, Terada S, Vacanti JP. Tissue engineering auricular reconstruction: In vitro and in vivo studies. Biomaterials 2004; 25: 1545 – 1557. |
|
dc.identifier.uri |
http://localhost:8080/xmlui/handle/CUHPOERS/100239 |
|
dc.description |
Peer Reviewed |
|
dc.description |
https://deepblue.lib.umich.edu/bitstream/2027.42/145213/1/lary27200.pdf |
|
dc.description |
https://deepblue.lib.umich.edu/bitstream/2027.42/145213/2/lary27200_am.pdf |
|
dc.format |
application/pdf |
|
dc.format |
application/pdf |
|
dc.publisher |
Wiley Periodicals, Inc. |
|
dc.rights |
IndexNoFollow |
|
dc.subject |
tissue engineering |
|
dc.subject |
craniofacial reconstruction |
|
dc.subject |
Auricular reconstruction |
|
dc.subject |
microtia |
|
dc.subject |
anotia |
|
dc.subject |
nasal reconstruction |
|
dc.subject |
computer‐aided design |
|
dc.subject |
computer‐aided manufacturing |
|
dc.subject |
CAD/CAM |
|
dc.subject |
three‐dimensional printing |
|
dc.subject |
Otolaryngology |
|
dc.subject |
Health Sciences |
|
dc.title |
Co‐culture of adipose‐derived stem cells and chondrocytes on three‐dimensionally printed bioscaffolds for craniofacial cartilage engineering |
|
dc.type |
Article |
|