Sangam: A Confluence of Knowledge Streams

Emerging Regenerative Approaches for Periodontal Reconstruction: A Systematic Review From the AAP Regeneration Workshop

Show simple item record

dc.contributor Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI.
dc.contributor Department of Periodontics, Virginia Commonwealth University School of Dentistry, Richmond, VA.
dc.contributor Department of Periodontics, University of Texas Health Science Center at San Antonio Dental School, San Antonio, TX.
dc.creator Lin, Zhao
dc.creator Rios, Hector F.
dc.creator Cochran, David L.
dc.date 2018-02-05T16:40:11Z
dc.date 2018-02-05T16:40:11Z
dc.date 2015-02
dc.date.accessioned 2022-05-19T10:35:47Z
dc.date.available 2022-05-19T10:35:47Z
dc.identifier Lin, Zhao; Rios, Hector F.; Cochran, David L. (2015). "Emerging Regenerative Approaches for Periodontal Reconstruction: A Systematic Review From the AAP Regeneration Workshop." Journal of Periodontology 86: S134-S152.
dc.identifier 0022-3492
dc.identifier 1943-3670
dc.identifier https://hdl.handle.net/2027.42/141767
dc.identifier 10.1902/jop.2015.130689
dc.identifier Journal of Periodontology
dc.identifier Chang PC, Seol YJ, Cirelli JA, et al. PDGF‐B gene therapy accelerates bone engineering and oral implant osseointegration. Gene Ther 2010; 17: 95 – 104.
dc.identifier Ulery BD, Nair LS, Laurencin CT. Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys 2011; 49: 832 – 864.
dc.identifier Pashuck ET, Stevens MM. Designing regenerative biomaterial therapies for the clinic. Sci Transl Med 2012;4:160sr164.
dc.identifier Woo KM, Jun JH, Chen VJ, et al. Nano‐fibrous scaffolding promotes osteoblast differentiation and biomineralization. Biomaterials 2007; 28: 335 – 343.
dc.identifier Liu X, Jin X, Ma PX. Nanofibrous hollow microspheres self‐assembled from star‐shaped polymers as injectable cell carriers for knee repair. Nat Mater 2011; 10: 398 – 406.
dc.identifier Park CH, Rios HF, Taut AD, et al. Image‐based, fiber guiding scaffolds: a platform for regenerating tissue interfaces. Tissue Eng Part C Methods 2014; 20: 533 – 542.
dc.identifier Park CH, Rios HF, Jin Q, et al. Tissue engineering bone‐ligament complexes using fiber‐guiding scaffolds. Biomaterials 2012; 33: 137 – 145.
dc.identifier Barker TS, Cueva MA, Rivera‐Hidalgo F, et al. A comparative study of root coverage using two different acellular dermal matrix products. J Periodontol 2010; 81: 1596 – 1603.
dc.identifier Harris RJ. A short‐term and long‐term comparison of root coverage with an acellular dermal matrix and a subepithelial graft. J Periodontol 2004; 75: 734 – 743.
dc.identifier Sanz M, Lorenzo R, Aranda JJ, Martin C, Orsini M. Clinical evaluation of a new collagen matrix (Mucograft prototype) to enhance the width of keratinized tissue in patients with fixed prosthetic restorations: A randomized prospective clinical trial. J Clin Periodontol 2009; 36: 868 – 876.
dc.identifier Nevins M, Nevins ML, Kim SW, Schupbach P, Kim DM. The use of mucograft collagen matrix to augment the zone of keratinized tissue around teeth: A pilot study. Int J Periodontics Restorative Dent 2011; 31: 367 – 373.
dc.identifier Cobb CM, Low SB, Coluzzi DJ. Lasers and the treatment of chronic periodontitis. Dent Clin North Am 2010; 54: 35 – 53.
dc.identifier Ejiri K, Aoki A, Yamaguchi Y, Ohshima M, Izumi Y. High‐frequency low‐level diode laser irradiation promotes proliferation and migration of primary cultured human gingival epithelial cells. Lasers Med Sci 2014; 29: 1339 – 1347.
dc.identifier Pourzarandian A, Watanabe H, Ruwanpura SM, Aoki A, Ishikawa I. Effect of low‐level Er:YAG laser irradiation on cultured human gingival fibroblasts. J Periodontol 2005; 76: 187 – 193.
dc.identifier Soares DM, Ginani F, Henriques AG, Barboza CA. Effects of laser therapy on the proliferation of human periodontal ligament stem cells [published online ahead of print September 7, 2013]. Lasers Med Sci doi:10.1007/s10103‐013‐1436‐9.
dc.identifier Wu JY, Chen CH, Yeh LY, Yeh ML, Ting CC, Wang YH. Low‐power laser irradiation promotes the proliferation and osteogenic differentiation of human periodontal ligament cells via cyclic adenosine monophosphate. Int J Oral Sci 2013; 5: 85 – 91.
dc.identifier Cobb CM. Lasers in periodontics: A review of the literature. J Periodontol 2006; 77: 545 – 564.
dc.identifier Karlsson MR, Diogo Löfgren CI, Jansson HM. The effect of laser therapy as an adjunct to non‐surgical periodontal treatment in subjects with chronic periodontitis: A systematic review. J Periodontol 2008; 79: 2021 – 2028.
dc.identifier Slot DE, Kranendonk AA, Paraskevas S, Van der Weijden F. The effect of a pulsed Nd:YAG laser in non‐surgical periodontal therapy. J Periodontol 2009; 80: 1041 – 1056.
dc.identifier Schwarz F, Aoki A, Becker J, Sculean A. Laser application in non‐surgical periodontal therapy: A systematic review. J Clin Periodontol 2008; 35 (Suppl. 8): 29 – 44.
dc.identifier Yukna RA, Carr RL, Evans GH. Histologic evaluation of an Nd:YAG laser‐assisted new attachment procedure in humans. Int J Periodontics Restorative Dent 2007; 27: 577 – 587.
dc.identifier Nevins ML, Camelo M, Schupbach P, Kim SW, Kim DM, Nevins M. Human clinical and histologic evaluation of laser‐assisted new attachment procedure. Int J Periodontics Restorative Dent 2012; 32: 497 – 507.
dc.identifier Offenbacher S, Barros SP, Beck JD. Rethinking periodontal inflammation. J Periodontol 2008; 79 (Suppl. 8): 1577 – 1584.
dc.identifier Bartold PM, Narayanan AS. Molecular and cell biology of healthy and diseased periodontal tissues. Periodontol 2000 2006; 40: 29 – 49.
dc.identifier Eke PI, Dye BA, Wei L, Thornton‐Evans GO, Genco RJ; CDC Periodontal Disease Surveillance workgroup. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J Dent Res 2012; 91: 914 – 920.
dc.identifier Papapanou PN. The prevalence of periodontitis in the US: Forget what you were told. J Dent Res 2012; 91: 907 – 908.
dc.identifier Polimeni G, Xiropaidis AV, Wikesjö UM. Biology and principles of periodontal wound healing/regeneration. Periodontol 2000 2006; 41: 30 – 47.
dc.identifier Bartold PM, Shi S, Gronthos S. Stem cells and periodontal regeneration. Periodontol 2000 2006; 40: 164 – 172.
dc.identifier Chen FM, An Y, Zhang R, Zhang M. New insights into and novel applications of release technology for periodontal reconstructive therapies. J Control Release 2011; 149: 92 – 110.
dc.identifier Mudda JA, Bajaj M. Stem cell therapy: A challenge to periodontist. Indian J Dent Res 2011; 22: 132 – 139.
dc.identifier Padial‐Molina M, Marchesan JT, Taut AD, Jin Q, Giannobile WV, Rios HF. Methods to validate tooth‐supporting regenerative therapies. Methods Mol Biol 2012; 887: 135 – 148.
dc.identifier Rios HF, Lin Z, Oh B, Park CH, Giannobile WV. Cell‐ and gene‐based therapeutic strategies for periodontal regenerative medicine. J Periodontol 2011; 82: 1223 – 1237.
dc.identifier Taba M Jr, Jin Q, Sugai JV, Giannobile WV. Current concepts in periodontal bioengineering. Orthod Craniofac Res 2005; 8: 292 – 302.
dc.identifier Lynch SE, de Castilla GR, Williams RC, et al. The effects of short‐term application of a combination of platelet‐derived and insulin‐like growth factors on periodontal wound healing. J Periodontol 1991; 62: 458 – 467.
dc.identifier Lynch SE, Williams RC, Polson AM, et al. A combination of platelet‐derived and insulin‐like growth factors enhances periodontal regeneration. J Clin Periodontol 1989; 16: 545 – 548.
dc.identifier Reynolds MA, Aichelmann‐Reidy ME. Protein and peptide‐based therapeutics in periodontal regeneration. J Evid Based Dent Pract 2012; 12 (Suppl. 3): 118 – 126.
dc.identifier Heijl L, Heden G, Svärdström G, Ostgren A. Enamel matrix derivative (EMDOGAIN) in the treatment of intrabony periodontal defects. J Clin Periodontol 1997; 24: 705 – 714.
dc.identifier Yukna RA, Krauser JT, Callan DP, Evans GH, Cruz R, Martin M. Multi‐center clinical comparison of combination anorganic bovine‐derived hydroxyapatite matrix (ABM)/cell binding peptide (P‐15) and ABM in human periodontal osseous defects. 6‐month results. J Periodontol 2000; 71: 1671 – 1679.
dc.identifier Nevins M, Giannobile WV, McGuire MK, et al. Platelet‐derived growth factor stimulates bone fill and rate of attachment level gain: Results of a large multicenter randomized controlled trial. J Periodontol 2005; 76: 2205 – 2215.
dc.identifier Jayakumar A, Rajababu P, Rohini S, et al. Multi‐centre, randomized clinical trial on the efficacy and safety of recombinant human platelet‐derived growth factor with β‐tricalcium phosphate in human intra‐osseous periodontal defects. J Clin Periodontol 2011; 38: 163 – 172.
dc.identifier Kitamura M, Nakashima K, Kowashi Y, et al. Periodontal tissue regeneration using fibroblast growth factor‐2: Randomized controlled phase II clinical trial. PLoS One 2008; 3: e2611.
dc.identifier Kitamura M, Akamatsu M, Machigashira M, et al. FGF‐2 stimulates periodontal regeneration: Results of a multi‐center randomized clinical trial. J Dent Res 2011; 90: 35 – 40.
dc.identifier Stavropoulos A, Windisch P, Gera I, Capsius B, Sculean A, Wikesjö UM. A phase IIa randomized controlled clinical and histological pilot study evaluating rhGDF‐5/β‐TCP for periodontal regeneration. J Clin Periodontol 2011; 38: 1044 – 1054.
dc.identifier Heijl L. Periodontal regeneration with enamel matrix derivative in one human experimental defect. A case report. J Clin Periodontol 1997; 24: 693 – 696.
dc.identifier Sculean A, Chiantella GC, Windisch P, Donos N. Clinical and histologic evaluation of human intrabony defects treated with an enamel matrix protein derivative (Emdogain). Int J Periodontics Restorative Dent 2000; 20: 374 – 381.
dc.identifier Mellonig JT. Enamel matrix derivative for periodontal reconstructive surgery: Technique and clinical and histologic case report. Int J Periodontics Restorative Dent 1999; 19: 8 – 19.
dc.identifier Camelo M, Nevins ML, Schenk RK, Lynch SE, Nevins M. Periodontal regeneration in human Class II furcations using purified recombinant human platelet‐derived growth factor‐BB (rhPDGF‐BB) with bone allograft. Int J Periodontics Restorative Dent 2003; 23: 213 – 225.
dc.identifier McGuire MK, Scheyer ET, Schupbach P. Growth factor‐mediated treatment of recession defects: A randomized controlled trial and histologic and microcomputed tomography examination. J Periodontol 2009; 80: 550 – 564.
dc.identifier Nevins M, Camelo M, Nevins ML, Schenk RK, Lynch SE. Periodontal regeneration in humans using recombinant human platelet‐derived growth factor‐BB (rhPDGF‐BB) and allogenic bone. J Periodontol 2003; 74: 1282 – 1292.
dc.identifier Takayama S, Murakami S, Shimabukuro Y, Kitamura M, Okada H. Periodontal regeneration by FGF‐2 (bFGF) in primate models. J Dent Res 2001; 80: 2075 – 2079.
dc.identifier Ripamonti U, Crooks J, Petit JC, Rueger DC. Periodontal tissue regeneration by combined applications of recombinant human osteogenic protein‐1 and bone morphogenetic protein‐2. A pilot study in Chacma baboons (Papio ursinus). Eur J Oral Sci 2001; 109: 241 – 248.
dc.identifier Wikesjö UM, Guglielmoni P, Promsudthi A, et al. Periodontal repair in dogs: Effect of rhBMP‐2 concentration on regeneration of alveolar bone and periodontal attachment. J Clin Periodontol 1999; 26: 392 – 400.
dc.identifier Giannobile WV, Ryan S, Shih MS, Su DL, Kaplan PL, Chan TC. Recombinant human osteogenic protein‐1 (OP‐1) stimulates periodontal wound healing in class III furcation defects. J Periodontol 1998; 69: 129 – 137.
dc.identifier Chiu HC, Chiang CY, Tu HP, Wikesjö UM, Susin C, Fu E. Effects of bone morphogenetic protein‐6 on periodontal wound healing/regeneration in supraalveolar periodontal defects in dogs. J Clin Periodontol 2013; 40: 624 – 630.
dc.identifier Wikesjö UM, Sorensen RG, Kinoshita A, Jian Li X, Wozney JM. Periodontal repair in dogs: Effect of recombinant human bone morphogenetic protein‐12 (rhBMP‐12) on regeneration of alveolar bone and periodontal attachment. J Clin Periodontol 2004; 31: 662 – 670.
dc.identifier Takeda K, Shiba H, Mizuno N, et al. Brain‐derived neurotrophic factor enhances periodontal tissue regeneration. Tissue Eng 2005; 11: 1618 – 1629.
dc.identifier Taut AD, Jin Q, Chung JH, et al. Sclerostin antibody stimulates bone regeneration after experimental periodontitis. J Bone Miner Res 2013; 28: 2347 – 2356.
dc.identifier Bashutski JD, Eber RM, Kinney JS, et al. Teriparatide and osseous regeneration in the oral cavity. N Engl J Med 2010; 363: 2396 – 2405.
dc.identifier Giannobile WV, Somerman MJ. Growth and amelogenin‐like factors in periodontal wound healing. A systematic review. Ann Periodontol 2003; 8: 193 – 204.
dc.identifier Esposito M, Grusovin MG, Papanikolaou N, Coulthard P, Worthington HV. Enamel matrix derivative (Emdogain) for periodontal tissue regeneration in intrabony defects. A Cochrane systematic review. Eur J Oral Implantol 2009; 2: 247 – 266.
dc.identifier Koop R, Merheb J, Quirynen M. Periodontal regeneration with enamel matrix derivative in reconstructive periodontal therapy: A systematic review. J Periodontol 2012; 83: 707 – 720.
dc.identifier Trombelli L, Farina R. Clinical outcomes with bioactive agents alone or in combination with grafting or guided tissue regeneration. J Clin Periodontol 2008; 35 (Suppl. 8): 117 – 135.
dc.identifier Tu YK, Woolston A, Faggion CM Jr. Do bone grafts or barrier membranes provide additional treatment effects for infrabony lesions treated with enamel matrix derivatives? A network meta‐analysis of randomized‐controlled trials. J Clin Periodontol 2010; 37: 59 – 79.
dc.identifier Thoma DS, Villar CC, Carnes DL, Dard M, Chun YH, Cochran DL. Angiogenic activity of an enamel matrix derivative (EMD) and EMD‐derived proteins: An experimental study in mice. J Clin Periodontol 2011; 38: 253 – 260.
dc.identifier Johnson DL, Carnes D, Steffensen B, Cochran DL. Cellular effects of enamel matrix derivative are associated with different molecular weight fractions following separation by size‐exclusion chromatography. J Periodontol 2009; 80: 648 – 656.
dc.identifier Stout BM, Alent BJ, Pedalino P, et al. Enamel matrix derivative: protein components and osteoinductive properties. J Periodontol 2014; 85: e9 – e17.
dc.identifier Kaigler D, Avila G, Wisner‐Lynch L, et al. Platelet‐derived growth factor applications in periodontal and peri‐implant bone regeneration. Expert Opin Biol Ther 2011; 11: 375 – 385.
dc.identifier McGuire MK, Kao RT, Nevins M, Lynch SE. rhPDGF‐BB promotes healing of periodontal defects: 24‐month clinical and radiographic observations. Int J Periodontics Restorative Dent 2006; 26: 223 – 231.
dc.identifier Nevins M, Kao RT, McGuire MK, et al. Platelet‐derived growth factor promotes periodontal regeneration in localized osseous defects: 36‐month extension results from a randomized, controlled, double‐masked clinical trial. J Periodontol 2013; 84: 456 – 464.
dc.identifier Stavropoulos A, Windisch P, Szendröi‐Kiss D, Peter R, Gera I, Sculean A. Clinical and histologic evaluation of granular Beta‐tricalcium phosphate for the treatment of human intrabony periodontal defects: A report on five cases. J Periodontol 2010; 81: 325 – 334.
dc.identifier Lallier TE, Palaiologou AA, Yukna RA, Layman DL. The putative collagen‐binding peptide P‐15 promotes fibroblast attachment to root shavings but not hydroxyapatite. J Periodontol 2003; 74: 458 – 467.
dc.identifier Yukna RA, Krauser JT, Callan DP, Evans GH, Cruz R, Martin M. Thirty‐six month follow‐up of 25 patients treated with combination anorganic bovine‐derived hydroxyapatite matrix (ABM)/cell‐binding peptide (P‐15) bone replacement grafts in human infrabony defects. I. Clinical findings. J Periodontol 2002; 73: 123 – 128.
dc.identifier Barros RR, Novaes AB Jr, Roriz VM, et al. Anorganic bovine matrix/p‐15 “flow” in the treatment of periodontal defects: Case series with 12 months of follow‐up. J Periodontol 2006; 77: 1280 – 1287.
dc.identifier Yukna R, Salinas TJ, Carr RF. Periodontal regeneration following use of ABM/P‐1 5: A case report. Int J Periodontics Restorative Dent 2002; 22: 146 – 155.
dc.identifier Mellonig JT. Human histologic evaluation of a bovine‐derived bone xenograft in the treatment of periodontal osseous defects. Int J Periodontics Restorative Dent 2000; 20: 19 – 29.
dc.identifier Kaigler D, Cirelli JA, Giannobile WV. Growth factor delivery for oral and periodontal tissue engineering. Expert Opin Drug Deliv 2006; 3: 647 – 662.
dc.identifier Kawaguchi H, Oka H, Jingushi S, et al. A local application of recombinant human fibroblast growth factor 2 for tibial shaft fractures: A randomized, placebo‐controlled trial. J Bone Miner Res 2010; 25: 2735 – 2743.
dc.identifier Mikic B. Multiple effects of GDF‐5 deficiency on skeletal tissues: Implications for therapeutic bioengineering. Ann Biomed Eng 2004; 32: 466 – 476.
dc.identifier Wolfman NM, Hattersley G, Cox K, et al. Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF‐beta gene family. J Clin Invest 1997; 100: 321 – 330.
dc.identifier Forslund C, Rueger D, Aspenberg P. A comparative dose‐response study of cartilage‐derived morphogenetic protein (CDMP)‐1, ‐2 and ‐3 for tendon healing in rats. J Orthop Res 2003; 21: 617 – 621.
dc.identifier Koch FP, Becker J, Terheyden H, Capsius B, Wagner W. A prospective, randomized pilot study on the safety and efficacy of recombinant human growth and differentiation factor‐5 coated onto β‐tricalcium phosphate for sinus lift augmentation. Clin Oral Implants Res 2010; 21: 1301 – 1308.
dc.identifier Stavropoulos A, Becker J, Capsius B, Açil Y, Wagner W, Terheyden H. Histological evaluation of maxillary sinus floor augmentation with recombinant human growth and differentiation factor‐5‐coated β‐tricalcium phosphate: Results of a multicenter randomized clinical trial. J Clin Periodontol 2011; 38: 966 – 974.
dc.identifier Magit DP, Maak T, Trioano N, et al. Healos/recombinant human growth and differentiation factor‐5 induces posterolateral lumbar fusion in a New Zealand white rabbit model. Spine (Phila Pa 1976) 2006; 31: 2180 – 2188.
dc.identifier Gruber RM, Ludwig A, Merten HA, Pippig S, Kramer FJ, Schliephake H. Sinus floor augmentation with recombinant human growth and differentiation factor‐5 (rhGDF‐5): A pilot study in the Goettingen miniature pig comparing autogenous bone and rhGDF‐5. Clin Oral Implants Res 2009; 20: 175 – 182.
dc.identifier Morotome Y, Goseki‐Sone M, Ishikawa I, Oida S. Gene expression of growth and differentiation factors‐5, ‐6, and ‐7 in developing bovine tooth at the root forming stage. Biochem Biophys Res Commun 1998; 244: 85 – 90.
dc.identifier Nakamura T, Yamamoto M, Tamura M, Izumi Y. Effects of growth/differentiation factor‐5 on human periodontal ligament cells. J Periodontal Res 2003; 38: 597 – 605.
dc.identifier Kadomatsu H, Matsuyama T, Yoshimoto T, et al. Injectable growth/differentiation factor‐5‐recombinant human collagen composite induces endochondral ossification via Sry‐related HMG box 9 (Sox9)expression and angiogenesis in murine calvariae. J Periodontal Res 2008; 43: 483 – 489.
dc.identifier Yamada Y, Nakamura S, Ito K, et al. Injectable bone tissue engineering using expanded mesenchymal stem cells. Stem Cells 2013; 31: 572 – 580.
dc.identifier Emerton KB, Drapeau SJ, Prasad H, et al. Regeneration of periodontal tissues in non‐human primates with rhGDF‐5 and beta‐tricalcium phosphate. J Dent Res 2011; 90: 1416 – 1421.
dc.identifier Lee JS, Wikesjö UM, Park JC, et al. Maturation of periodontal tissues following implantation of rhGDF‐5/β‐TCP in one‐wall intra‐bony defects in dogs: 24‐week histological observations. J Clin Periodontol 2012; 39: 466 – 474.
dc.identifier King GN, King N, Cruchley AT, Wozney JM, Hughes FJ. Recombinant human bone morphogenetic protein‐2 promotes wound healing in rat periodontal fenestration defects. J Dent Res 1997; 76: 1460 – 1470.
dc.identifier Kinoshita A, Oda S, Takahashi K, Yokota S, Ishikawa I. Periodontal regeneration by application of recombinant human bone morphogenetic protein‐2 to horizontal circumferential defects created by experimental periodontitis in beagle dogs. J Periodontol 1997; 68: 103 – 109.
dc.identifier Ripamonti U, Heliotis M, van den Heever B, Reddi AH. Bone morphogenetic proteins induce periodontal regeneration in the baboon (Papio ursinus). J Periodontal Res 1994; 29: 439 – 445.
dc.identifier Takeda K, Sakai N, Shiba H, et al. Characteristics of high‐molecular‐weight hyaluronic acid as a brain‐derived neurotrophic factor scaffold in periodontal tissue regeneration. Tissue Eng Part A 2011; 17: 955 – 967.
dc.identifier Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: The road from laboratory to clinic, part II (BMP delivery). J Tissue Eng Regen Med 2008; 2: 81 – 96.
dc.identifier Bishop GB, Einhorn TA. Current and future clinical applications of bone morphogenetic proteins in orthopaedic trauma surgery. Int Orthop 2007; 31: 721 – 727.
dc.identifier Barros SP, Silva MA, Somerman MJ, Nociti FH Jr. Parathyroid hormone protects against periodontitis‐associated bone loss. J Dent Res 2003; 82: 791 – 795.
dc.identifier Miller SC, Hunziker J, Mecham M, Wronski TJ. Intermittent parathyroid hormone administration stimulates bone formation in the mandibles of aged ovariectomized rats. J Dent Res 1997; 76: 1471 – 1476.
dc.identifier Padbury AD Jr, Tözüm TF, Taba M Jr, et al. The impact of primary hyperparathyroidism on the oral cavity. J Clin Endocrinol Metab 2006; 91: 3439 – 3445.
dc.identifier Kuchler U, Luvizuto ER, Tangl S, Watzek G, Gruber R. Short‐term teriparatide delivery and osseointegration: A clinical feasibility study. J Dent Res 2011; 90: 1001 – 1006.
dc.identifier Poole KE, van Bezooijen RL, Loveridge N, et al. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J 2005; 19: 1842 – 1844.
dc.identifier Balemans W, Ebeling M, Patel N, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 2001; 10: 537 – 543.
dc.identifier Li X, Ominsky MS, Warmington KS, et al. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res 2009; 24: 578 – 588.
dc.identifier Padhi D, Jang G, Stouch B, Fang L, Posvar E. Single‐dose, placebo‐controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res 2011; 26: 19 – 26.
dc.identifier Thomas ED, Lochte HL Jr, Lu WC, Ferrebee JW. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med 1957; 257: 491 – 496.
dc.identifier Aboody K, Capela A, Niazi N, Stern JH, Temple S. Translating stem cell studies to the clinic for CNS repair: Current state of the art and the need for a Rosetta stone. Neuron 2011; 70: 597 – 613.
dc.identifier Ren G, Chen X, Dong F, et al. Concise review: Mesenchymal stem cells and translational medicine: Emerging issues. Stem Cells Transl Med 2012; 1: 51 – 58.
dc.identifier Kawaguchi H, Hirachi A, Hasegawa N, et al. Enhancement of periodontal tissue regeneration by transplantation of bone marrow mesenchymal stem cells. J Periodontol 2004; 75: 1281 – 1287.
dc.identifier Ranganath SH, Levy O, Inamdar MS, Karp JM. Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease. Cell Stem Cell 2012; 10: 244 – 258.
dc.identifier Knaän‐Shanzer S. Concise review: The immune status of mesenchymal stem cells and its relevance for therapeutic application. Stem Cells 2014; 32: 603 – 608.
dc.identifier Salem HK, Thiemermann C. Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 2010; 28: 585 – 596.
dc.identifier Hynes K, Menicanin D, Gronthos S, Bartold PM. Clinical utility of stem cells for periodontal regeneration. Periodontol 2000 2012; 59: 203 – 227.
dc.identifier Hasegawa N, Kawaguchi H, Hirachi A, et al. Behavior of transplanted bone marrow‐derived mesenchymal stem cells in periodontal defects. J Periodontol 2006; 77: 1003 – 1007.
dc.identifier Yang Y, Rossi FM, Putnins EE. Periodontal regeneration using engineered bone marrow mesenchymal stromal cells. Biomaterials 2010; 31: 8574 – 8582.
dc.identifier Zhou J, Shi S, Shi Y, et al. Role of bone marrow‐derived progenitor cells in the maintenance and regeneration of dental mesenchymal tissues. J Cell Physiol 2011; 226: 2081 – 2090.
dc.identifier Feng F, Akiyama K, Liu Y, et al. Utility of PDL progenitors for in vivo tissue regeneration: A report of 3 cases. Oral Dis 2010; 16: 20 – 28.
dc.identifier Chen FM, Sun HH, Lu H, Yu Q. Stem cell‐delivery therapeutics for periodontal tissue regeneration. Biomaterials 2012; 33: 6320 – 6344.
dc.identifier Yamada Y, Ueda M, Hibi H, Baba S. A novel approach to periodontal tissue regeneration with mesenchymal stem cells and platelet‐rich plasma using tissue engineering technology: A clinical case report. Int J Periodontics Restorative Dent 2006; 26: 363 – 369.
dc.identifier Kaigler D, Pagni G, Park CH, Tarle SA, Bartel RL, Giannobile WV. Angiogenic and osteogenic potential of bone repair cells for craniofacial regeneration. Tissue Eng Part A 2010; 16: 2809 – 2820.
dc.identifier Kaigler D, Pagni G, Park CH, et al. Stem cell therapy for craniofacial bone regeneration: A randomized, controlled feasibility trial. Cell Transplant 2013; 22: 767 – 777.
dc.identifier McAllister BS, Haghighat K, Gonshor A. Histologic evaluation of a stem cell‐based sinus‐augmentation procedure. J Periodontol 2009; 80: 679 – 686.
dc.identifier Gonshor A, McAllister BS, Wallace SS, Prasad H. Histologic and histomorphometric evaluation of an allograft stem cell‐based matrix sinus augmentation procedure. Int J Oral Maxillofac Implants 2011; 26: 123 – 131.
dc.identifier McAllister BS. Stem cell‐containing allograft matrix enhances periodontal regeneration: Case presentations. Int J Periodontics Restorative Dent 2011; 31: 149 – 155.
dc.identifier Hiraga T, Ninomiya T, Hosoya A, Takahashi M, Nakamura H. Formation of bone‐like mineralized matrix by periodontal ligament cells in vivo: A morphological study in rats. J Bone Miner Metab 2009; 27: 149 – 157.
dc.identifier Ninomiya T, Hiraga T, Hosoya A, et al. Enhanced bone‐forming activity of side population cells in the periodontal ligament. Cell Transplant 2014: 23: 691 – 701.
dc.identifier Yu N, Oortgiesen DA, Bronckers AL, Yang F, Walboomers XF, Jansen JA. Enhanced periodontal tissue regeneration by periodontal cell implantation. J Clin Periodontol 2013; 40: 698 – 706.
dc.identifier Lekic PC, Rajshankar D, Chen H, Tenenbaum H, McCulloch CA. Transplantation of labeled periodontal ligament cells promotes regeneration of alveolar bone. Anat Rec 2001; 262: 193 – 202.
dc.identifier Akizuki T, Oda S, Komaki M, et al. Application of periodontal ligament cell sheet for periodontal regeneration: A pilot study in beagle dogs. J Periodontal Res 2005; 40: 245 – 251.
dc.identifier Tsumanuma Y, Iwata T, Washio K, et al. Comparison of different tissue‐derived stem cell sheets for periodontal regeneration in a canine 1‐wall defect model. Biomaterials 2011; 32: 5819 – 5825.
dc.identifier Gao LN, An Y, Lei M, et al. The effect of the coumarin‐like derivative osthole on the osteogenic properties of human periodontal ligament and jaw bone marrow mesenchymal stem cell sheets. Biomaterials 2013; 34: 9937 – 9951.
dc.identifier Flores MG, Yashiro R, Washio K, Yamato M, Okano T, Ishikawa I. Periodontal ligament cell sheet promotes periodontal regeneration in athymic rats. J Clin Periodontol 2008; 35: 1066 – 1072.
dc.identifier Iwata T, Yamato M, Tsuchioka H, et al. Periodontal regeneration with multi‐layered periodontal ligament‐derived cell sheets in a canine model. Biomaterials 2009; 30: 2716 – 2723.
dc.identifier Yang Z, Jin F, Zhang X, et al. Tissue engineering of cementum/periodontal‐ligament complex using a novel three‐dimensional pellet cultivation system for human periodontal ligament stem cells. Tissue Eng Part C Methods 2009; 15: 571 – 581.
dc.identifier Sonoyama W, Liu Y, Fang D, et al. Mesenchymal stem cell‐mediated functional tooth regeneration in swine. PLoS One 2006; 1: e79.
dc.identifier Wei F, Song T, Ding G, et al. Functional tooth restoration by allogeneic mesenchymal stem cell‐based bio‐root regeneration in swine. Stem Cells Dev 2013; 22: 1752 – 1762.
dc.identifier Gault P, Black A, Romette JL, et al. Tissue‐engineered ligament: Implant constructs for tooth replacement. J Clin Periodontol 2010; 37: 750 – 758.
dc.identifier Yang JR, Hsu CW, Liao SC, Lin YT, Chen LR, Yuan K. Transplantation of embryonic stem cells improves the regeneration of periodontal furcation defects in a porcine model. J Clin Periodontol 2013; 40: 364 – 371.
dc.identifier Duan X, Tu Q, Zhang J, et al. Application of induced pluripotent stem (iPS) cells in periodontal tissue regeneration. J Cell Physiol 2011; 226: 150 – 157.
dc.identifier Hynes K, Menicanin D, Han J, et al. Mesenchymal stem cells from iPS cells facilitate periodontal regeneration. J Dent Res 2013; 92: 833 – 839.
dc.identifier McGuire MK, Scheyer ET, Nunn ME, Lavin PT. A pilot study to evaluate a tissue‐engineered bilayered cell therapy as an alternative to tissue from the palate. J Periodontol 2008; 79: 1847 – 1856.
dc.identifier Morelli T, Neiva R, Nevins ML, et al. Angiogenic biomarkers and healing of living cellular constructs. J Dent Res 2011; 90: 456 – 462.
dc.identifier McGuire MK, Scheyer ET, Nevins ML, et al. Living cellular construct for increasing the width of keratinized gingiva: Results from a randomized, within‐patient, controlled trial. J Periodontol 2011; 82: 1414 – 1423.
dc.identifier Scheyer ET, Nevins ML, Neiva R, et al. Generation of site‐appropriate tissue by a living cellular sheet in the treatment of mucogingival defects. J Periodontol 2014; 85: e57 – e64.
dc.identifier Yamada Y, Nakamura S, Ueda M, Ito K. Papilla regeneration by injectable stem cell therapy with regenerative medicine: Long‐term clinical prognosis [published online ahead of print March 27, 2013]. J Tissue Eng Regen Med doi:10.1002/term.1737.
dc.identifier Leslie SK, Cohen DJ, Sedlaczek J, Pinsker EJ, Boyan BD, Schwartz Z. Controlled release of rat adipose‐derived stem cells from alginate microbeads. Biomaterials 2013; 34: 8172 – 8184.
dc.identifier Healy KE, McDevitt TC, Murphy WL, Nerem RM. Engineering the emergence of stem cell therapeutics. Sci Transl Med 2013;5:207ed217.
dc.identifier Lin Z, Fateh A, Salem DM, Intini G. Periosteum: Biology and applications in craniofacial bone regeneration. J Dent Res 2014; 93: 109 – 116.
dc.identifier Zhao M, Jin Q, Berry JE, Nociti FH Jr, Giannobile WV, Somerman MJ. Cementoblast delivery for periodontal tissue engineering. J Periodontol 2004; 75: 154 – 161.
dc.identifier Morsczeck C, Gotz W, Schierholz J, et al. Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 2005; 24: 155 – 165.
dc.identifier Ditto AJ, Shah PN, Yun YH. Non‐viral gene delivery using nanoparticles. Expert Opin Drug Deliv 2009; 6: 1149 – 1160.
dc.identifier Sheridan C. Gene therapy finds its niche. Nat Biotechnol 2011; 29: 121 – 128.
dc.identifier Cavazzana‐Calvo M, Hacein‐Bey S, de Saint Basile G, et al. Gene therapy of human severe combined immunodeficiency (SCID)‐X1 disease. Science 2000; 288: 669 – 672.
dc.identifier Fischer A, Hacein‐Bey‐Abina S, Cavazzana‐Calvo M. 20 years of gene therapy for SCID. Nat Immunol 2010; 11: 457 – 460.
dc.identifier Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2012 — An update. J Gene Med 2013; 15: 65 – 77.
dc.identifier Ramseier CA, Abramson ZR, Jin Q, Giannobile WV. Gene therapeutics for periodontal regenerative medicine. Dent Clin North Am 2006; 50: 245 – 263, ix.
dc.identifier Nayak S, Herzog RW. Progress and prospects: Immune responses to viral vectors. Gene Ther 2010; 17: 295 – 304.
dc.identifier Giannobile WV, Lee CS, Tomala MP, Tejeda KM, Zhu Z. Platelet‐derived growth factor (PDGF) gene delivery for application in periodontal tissue engineering. J Periodontol 2001; 72: 815 – 823.
dc.identifier Zhu Z, Lee CS, Tejeda KM, Giannobile WV. Gene transfer and expression of platelet‐derived growth factors modulate periodontal cellular activity. J Dent Res 2001; 80: 892 – 897.
dc.identifier Chang PC, Cirelli JA, Jin Q, et al. Adenovirus encoding human platelet‐derived growth factor‐B delivered to alveolar bone defects exhibits safety and biodistribution profiles favorable for clinical use. Hum Gene Ther 2009; 20: 486 – 496.
dc.identifier Anusaksathien O, Jin Q, Zhao M, Somerman MJ, Giannobile WV. Effect of sustained gene delivery of platelet‐derived growth factor or its antagonist (PDGF‐1308) on tissue‐engineered cementum. J Periodontol 2004; 75: 429 – 440.
dc.identifier Jin Q, Anusaksathien O, Webb SA, Printz MA, Giannobile WV. Engineering of tooth‐supporting structures by delivery of PDGF gene therapy vectors. Mol Ther 2004; 9: 519 – 526.
dc.identifier Anusaksathien O, Webb SA, Jin QM, Giannobile WV. Platelet‐derived growth factor gene delivery stimulates ex vivo gingival repair. Tissue Eng 2003; 9: 745 – 756.
dc.identifier Dunn CA, Jin Q, Taba M Jr, Franceschi RT, Bruce Rutherford R, Giannobile WV. BMP gene delivery for alveolar bone engineering at dental implant defects. Mol Ther 2005; 11: 294 – 299.
dc.identifier Chen YL, Chen PK, Jeng LB, et al. Periodontal regeneration using ex vivo autologous stem cells engineered to express the BMP‐2 gene: An alternative to alveolaplasty. Gene Ther 2008; 15: 1469 – 1477.
dc.identifier Jin QM, Anusaksathien O, Webb SA, Rutherford RB, Giannobile WV. Gene therapy of bone morphogenetic protein for periodontal tissue engineering. J Periodontol 2003; 74: 202 – 213.
dc.identifier Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: From human mutations to treatments. Nat Med 2013; 19: 179 – 192.
dc.identifier Chang J, Sonoyama W, Wang Z, et al. Noncanonical Wnt‐4 signaling enhances bone regeneration of mesenchymal stem cells in craniofacial defects through activation of p38 MAPK. J Biol Chem 2007; 282: 30938 – 30948.
dc.identifier Boden SD, Liu Y, Hair GA, et al. LMP‐1, a LIM‐domain protein, mediates BMP‐6 effects on bone formation. Endocrinology 1998; 139: 5125 – 5134.
dc.identifier Lin Z, Navarro VP, Kempeinen KM, et al. LMP1 regulates periodontal ligament progenitor cell proliferation and differentiation. Bone 2010; 47: 55 – 64.
dc.identifier Lin Z, Rios HF, Park CH, et al. LIM domain protein‐3 (LMP3) cooperates with BMP7 to promote tissue regeneration by ligament progenitor cells. Gene Ther 2013; 20: 1 – 6.
dc.identifier Elangovan S, Jain S, Tsai PC, Margolis HC, Amiji M. Nano‐sized calcium phosphate particles for periodontal gene therapy. J Periodontol 2013; 84: 117 – 125.
dc.identifier Sugano M, Negishi Y, Endo‐Takahashi Y, et al. Gene delivery to periodontal tissue using Bubble liposomes and ultrasound. J Periodontal Res 2014; 49: 398 – 404.
dc.identifier Chen R, Chiba M, Mori S, Fukumoto M, Kodama T. Periodontal gene transfer by ultrasound and nano/microbubbles. J Dent Res 2009; 88: 1008 – 1013.
dc.identifier Zangi L, Lui KO, von Gise A, et al. Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat Biotechnol 2013; 31: 898 – 907.
dc.identifier Lui KO, Zangi L, Silva EA, et al. Driving vascular endothelial cell fate of human multipotent Isl1+ heart progenitors with VEGF modified mRNA. Cell Res 2013; 23: 1172 – 1186.
dc.identifier Moshaverinia A, Chen C, Xu X, et al. Bone regeneration potential of stem cells derived from periodontal ligament or gingival tissue sources encapsulated in RGD‐modified alginate scaffold. Tissue Eng Part A 2014; 20: 611 – 621.
dc.identifier Garg T, Singh O, Arora S, Murthy R. Scaffold: A novel carrier for cell and drug delivery. Crit Rev Ther Drug Carrier Syst 2012; 29: 1 – 63.
dc.identifier Gupte MJ, Ma PX. Nanofibrous scaffolds for dental and craniofacial applications. J Dent Res 2012; 91: 227 – 234.
dc.identifier Galler KM, D’Souza RN. Tissue engineering approaches for regenerative dentistry. Regen Med 2011; 6: 111 – 124.
dc.identifier Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells. Science 2009; 324: 1673 – 1677.
dc.identifier Park CH, Rios HF, Jin Q, et al. Biomimetic hybrid scaffolds for engineering human tooth‐ligament interfaces. Biomaterials 2010; 31: 5945 – 5952.
dc.identifier Chen W, Villa‐Diaz LG, Sun Y, et al. Nanotopography influences adhesion, spreading, and self‐renewal of human embryonic stem cells. ACS Nano 2012; 6: 4094 – 4103.
dc.identifier Padial‐Molina M, Galindo‐Moreno P, Fernández‐Barbero JE, et al. Role of wettability and nanoroughness on interactions between osteoblast and modified silicon surfaces. Acta Biomater 2011; 7: 771 – 778.
dc.identifier Padial‐Molina MG, Galindo‐Moreno P, Avila‐Ortiz G. Biomimetic ceramics in implant dentistry. Minerva Biotecnol 2009; 21: 173 – 186.
dc.identifier Peres MF, Ribeiro ED, Casarin RC, et al. Hydroxyapatite/β‐tricalcium phosphate and enamel matrix derivative for treatment of proximal class II furcation defects: A randomized clinical trial. J Clin Periodontol 2013; 40: 252 – 259.
dc.identifier Guo J, Chen H, Wang Y, Cao CB, Guan GQ. A novel porcine acellular dermal matrix scaffold used in periodontal regeneration. Int J Oral Sci 2013; 5: 37 – 43.
dc.identifier Kosen Y, Miyaji H, Kato A, Sugaya T, Kawanami M. Application of collagen hydrogel/sponge scaffold facilitates periodontal wound healing in class II furcation defects in beagle dogs. J Periodontal Res 2012; 47: 626 – 634.
dc.identifier.uri http://localhost:8080/xmlui/handle/CUHPOERS/100375
dc.description Peer Reviewed
dc.description https://deepblue.lib.umich.edu/bitstream/2027.42/141767/1/jpers134-sup-0001.pdf
dc.description https://deepblue.lib.umich.edu/bitstream/2027.42/141767/2/jpers134.pdf
dc.format application/pdf
dc.format application/pdf
dc.publisher American Academy of Periodontology
dc.publisher Wiley Periodicals, Inc.
dc.rights IndexNoFollow
dc.subject tissue engineering
dc.subject wound healing
dc.subject Guided tissue regeneration
dc.subject Dentistry
dc.subject Health Sciences
dc.title Emerging Regenerative Approaches for Periodontal Reconstruction: A Systematic Review From the AAP Regeneration Workshop
dc.type Article


Files in this item

Files Size Format View
jpers134.pdf 801.5Kb application/pdf View/Open
jpers134-sup-0001.pdf 47.71Kb application/pdf View/Open

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse