Sangam: A Confluence of Knowledge Streams

Structural metrics of high-temperature lattice conductivity

Show simple item record

dc.contributor Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2125
dc.creator Huang, B. L.
dc.creator Kaviany, Massoud
dc.date 2011-11-15T16:06:46Z
dc.date 2011-11-15T16:06:46Z
dc.date 2006-12-15
dc.date.accessioned 2022-05-19T12:54:50Z
dc.date.available 2022-05-19T12:54:50Z
dc.identifier Huang, B. L.; Kaviany, M. (2006). "Structural metrics of high-temperature lattice conductivity." Journal of Applied Physics 100(12): 123507-123507-12. <http://hdl.handle.net/2027.42/87699>
dc.identifier https://hdl.handle.net/2027.42/87699
dc.identifier 10.1063/1.2396794
dc.identifier Journal of Applied Physics
dc.identifier A. Griesinger, K. Spindler, and E. Hahne, Int. J. Heat Mass Transfer 42, 4363 (1999).
dc.identifier A. J. H. McGaughey and M. Kaviany, Int. J. Heat Mass Transfer 47, 1799 (2004).
dc.identifier P. K. Schelling, S. R. Phillpot, and P. Keblinski, Phys. Rev. B 65, 144306 (2002).
dc.identifier J. Che, T. Cagin, W. Deng, and W. A. Goddard, J. Chem. Phys. 113, 6888 (2000).
dc.identifier A. R. Leach, Molecular Modeling Principles and Applications (Addison Wesley Longman, Reading, MA, 1996).
dc.identifier J. Callaway, Phys. Rev. 113, 1046 (1959).
dc.identifier M. G. Holland, Phys. Rev. 132, 2461 (1963).
dc.identifier A. J. H. McGaughey and M. Kaviany, Phys. Rev. B 69, 094303 (2004).
dc.identifier C. L. Julian, Phys. Rev. 137, A128 (1965).
dc.identifier R. Berman, Thermal Conduction in Solids (Oxford University Press, New York, 1976).
dc.identifier G. A. Slack, Solid State Phys. 34, 1 (1979).
dc.identifier B. L. Huang, A. Mcgaughey, and M. Kaviany, Int. J. Heat Mass Transfer (2006) (in press).
dc.identifier N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunder College Press, Philadelphia, 1976).
dc.identifier G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, New York, 1945).
dc.identifier J. P. Biersack and J. F. Ziegler, Nucl. Instrum. Methods Phys. Res. 194, 93 (1982).
dc.identifier I. Feranchuk, A. Minkevich, and A. Ulyanenkov, Eur. Phys. J.: Appl. Phys. 19, 95 (2002).
dc.identifier E. B. Wilson, J. C. Decius, and P. C. Cross, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra (Van Nostrand, New York, 1955).
dc.identifier J. Paolini, J. Comput. Chem. 11, 1160 (1990).
dc.identifier G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand, New York, 1979).
dc.identifier L. Pauling, The Nature of Chemical Bonds (Cornell University Press, Ithaca, 1960).
dc.identifier C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996).
dc.identifier D. Sirdeshmukh, P. Krishna, and K. Subhadra, J. Mater. Sci. 38, 2001 (2003).
dc.identifier R. Astala, S. M. Auerbach, and P. A. Monson, Phys. Rev. B 71, 014112 (2005).
dc.identifier M. T. Dove, Introduction to Lattice Dynamics (Cambridge University Press, Cambridge, Massachusetts, 1993).
dc.identifier R. Zallen and M. Slade, Phys. Rev. B 18, 5775 (1978).
dc.identifier A. R. Ruffa, J. Chem. Phys. 83, 6405 (1985).
dc.identifier F. G. Mateo, J. Zuniga, A. Requena, and A. Hidalgo, J. Phys. B 23, 2771 (1990).
dc.identifier H. Septzler, J. Phys. Chem. Solids 33, 1727 (1972).
dc.identifier D. G. Cahill, S. K. Watson, and R. O. Pohl, Phys. Rev. B 46, 6131 (1992).
dc.identifier C. Uher, Semicond. Semimetals 69, 140 (2001).
dc.identifier S. Duclos, K. Brister, R. Haddon, A. Kortan, and F. Thiel, Nature 351, 380 (1991).
dc.identifier R. Yu, N. Tea, M. B. Salamon, D. Lorents, and R. Malhotra, Phys. Rev. Lett. 68, 2050 (1992).
dc.identifier.uri http://localhost:8080/xmlui/handle/CUHPOERS/113667
dc.description An atomic structure-based model for high-temperature lattice conductivity is developed for both compact crystals and cage-bridge crystals. For compact crystals, where long-range acoustic phonons dominate, the Debye temperature TDTD and Grüneisen parameter γγ are estimated using interatomic potentials to arrive at the lattice conductivity relation. Under the assumption of homogeneous deformation, TDTD is estimated according to a simplified force constant matrix and a phenomenological combinative rule for force constants, which is applicable to an arbitrary pair of interacting atoms. Also, γγ is estimated from a general Lennard-Jones potential form and the combination of the bonds. The results predicted by the model are in close agreement with the experimental results. For cage-bridge crystals, where both short-range acoustic phonons and optical phonons may be important, a simple mean-free path model is proposed: The phonon mean-free path of such a crystal at high temperatures is essentially limited by its structure and is equal to the cage size. This model also shows good agreement with the results of experiments and molecular dynamics simulations. Based on this atomic-level model, the structural metrics of crystals with low or high lattice conductivity are discussed, and some strategies for thermal design and management are suggested.
dc.description Peer Reviewed
dc.description http://deepblue.lib.umich.edu/bitstream/2027.42/87699/2/123507_1.pdf
dc.format application/pdf
dc.publisher The American Institute of Physics
dc.rights © The American Institute of Physics
dc.subject Physics
dc.subject Science
dc.title Structural metrics of high-temperature lattice conductivity
dc.type Article


Files in this item

Files Size Format View
123507_1.pdf 527.6Kb application/pdf View/Open

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse