Sangam: A Confluence of Knowledge Streams

All of the human β‐type globin genes compete for LCR enhancer activity in embryonic erythroid cells of yeast artificial chromosome transgenic mice

Show simple item record

dc.creator Okamura, Eiichi
dc.creator Matsuzaki, Hitomi
dc.creator Campbell, Andrew D.
dc.creator Engel, James Douglas
dc.creator Fukamizu, Akiyoshi
dc.creator Tanimoto, Keiji
dc.date 2020-03-17T18:30:19Z
dc.date 2020-03-17T18:30:19Z
dc.date 2009-12
dc.date.accessioned 2022-05-19T13:29:43Z
dc.date.available 2022-05-19T13:29:43Z
dc.identifier Okamura, Eiichi; Matsuzaki, Hitomi; Campbell, Andrew D.; Engel, James Douglas; Fukamizu, Akiyoshi; Tanimoto, Keiji (2009). "All of the human β‐type globin genes compete for LCR enhancer activity in embryonic erythroid cells of yeast artificial chromosome transgenic mice." The FASEB Journal 23(12): 4335-4343.
dc.identifier 0892-6638
dc.identifier 1530-6860
dc.identifier http://hdl.handle.net/2027.42/154371
dc.identifier 10.1096/fj.09-137778
dc.identifier The FASEB Journal
dc.identifier Gaensler, K. M., Kitamura, M., and Kan, Y. W. 1993 Germ-line transmission and developmental regulation of a 150-kb yeast artificial chromosome containing the human beta-globin locus in transgenic mice. Proc. Natl. Acad. Sci. U. S. A. 90 11381 – 1138
dc.identifier Shimotsuma, M., Matsuzaki, H., Tanabe, O., Campbell, A. D., Engel, J. D., Fukamizu, A., and Tanimoto, K. 2007 Linear distance from the locus control region determines epsilonglobin transcriptional activity. Mol. Cell. Biol. 27 5664 – 567
dc.identifier Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. 2002 Capturing chromosome conformation. Science 295 1306 – 131
dc.identifier Tanimoto, K., Liu, Q., Bungert, J., and Engel, J. D. 1999 The polyoma virus enhancer cannot substitute for DNase I core hypersensitive sites 2-4 in the human beta-globin LCR. Nucleic AcidsRs. 27 3130 – 313
dc.identifier Tanimoto, K., Liu, Q., Grosveld, F., Bungert, J., and Engel, J. D. 2000 Context-dependent EKLF responsiveness defines the developmental specificity of the human epsilon-globin gene in erythroid cells ofYAC transgenic mice. Genes Dev. 14 2778 – 279
dc.identifier Yu, R. N., Ito, M., Saunders, T. L., Camper, S. A., and Jameson, J. L. 1998 Role of Ahch in gonadal development and game- togenesis. Nat. Genet. 20, 353 – 35
dc.identifier Tolhuis, B., Palstra, R. J., Splinter, E., Grosveld, F., and de Laat, W. 2002 Looping and interaction between hypersensitive sites in the active beta-globin locus. Mol. Cell 10 1453 – 146
dc.identifier Vakoc, C. R., Letting, D. L., Gheldof, N., Sawado, T., Bender, M. A., Groudine, M., Weiss, M. J., Dekker, J., and Blobel, G. A. 2005 Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol. Cell 17 453 – 46
dc.identifier Palstra, R. J., Tolhuis, B., Splinter, E., Nijmeijer, R., Grosveld, F., and de Laat, W. 2003 The beta-globin nuclear compartment in development and erythroid differentiation. Nat. Genet. 35 190 – 19
dc.identifier Bungert, J., Dave, U., Lim, K. C., Lieuw, K. H., Shavit, J. A., Liu, Q., and Engel, J. D. 1995 Synergistic regulation of human beta-globin gene switching by locus control region elements HS3 and HS4. Genes Dev. 9, 3083 – 309
dc.identifier Clouston, W. M., Evans, B. A., Haralambidis, J., and Richards, R. I. 1988 Molecular cloning of the mouse angiotensinogen gene. Genomics 2 240 – 24
dc.identifier Kingsley, P. D., Malik, J., Emerson, R. L., Bushnell, T. P., McGrath, K. E., Bloedorn, L. A., Bulger, M., and Palis, J. 2006 “Maturational” globin switching in primary primitive erythroid cells. Blood 107 1665 – 167
dc.identifier Yu, M., Han, H., Xiang, P., Li, Q., and Stamatoyannopoulos, G. 2006 Autonomous silencing as well as competition controls gamma-globin gene expression during development. Mol. Cell. Biol. 26 4775 – 478
dc.identifier Hanscombe, O., Whyatt, D., Fraser, P., Yannoutsos, N., Greaves, D., Dillon, N., and Grosveld, F. 1991 Importance of globin gene order for correct developmental expression. Genes Dev. 5 1387 – 139
dc.identifier Li, Q., Peterson, K. R., Fang, X., and Stamatoyannopoulos, G. 2002 Locus control regions. Blood 100 3077 – 308
dc.identifier Carter, D., Chakalova, L., Osborne, C. S., Dai, Y. F., and Fraser, P. 2002 Long-range chromatin regulatory interactions in vivo. Nat. Genet. 32 623 – 62
dc.identifier Tanimoto, K., Sugiura, A., Omori, A., Felsenfeld, G., Engel, J. D., and Fukamizu, A. 2003 Human beta-globin locus control region HS5 contains CTCF- and developmental stage-dependent enhancer-blocking activity in erythroid cells. Mol. Cell. Biol. 23 8946 – 895
dc.identifier Tuan, D., Kong, S., and Hu, K. 1992 Transcription of the hypersensitive site HS2 enhancer in erythroid cells. Proc. Natl. Acad. Sci. U. S. A. 89 11219 – 1122
dc.identifier Ashe, H. L., Monks, J., Wijgerde, M., Fraser, P., and Proudfoot, N. J. 1997 Intergenic transcription and transinduction of the human beta-globin locus. Genes Dev. 11 2494 – 250
dc.identifier Plant, K. E., Routledge, S. J., and Proudfoot, N. J. 2001 Intergenic transcription in the human beta-globin gene cluster. Mol. Cell. Biol. 21 6507 – 651
dc.identifier Bulger, M., and Groudine, M. 1999 Looping versus linking: toward a model for long-distance gene activation. Genes Dev. 13 2465 – 247
dc.identifier Engel, J. D., and Tanimoto, K. 2000 Looping, linking, and chromatin activity: new insights into beta-globin locus regulation. Cell 100 499 – 50
dc.identifier Blackwood, E. M., and Kadonaga, J. T. 1998 Going the distance: a current view of enhancer action. Science 281 60 – 6
dc.identifier Zhu, X., Ling, J., Zhang, L., Pi, W., Wu, M., and Tuan, D. 2007 A facilitated tracking and transcription mechanism of long- range enhancer function. Nucleic Acids Res. 35 5532 – 554
dc.identifier Hardison, R. 1998 Hemoglobins from bacteria to man: evolution of different patterns of gene expression. J. Exp. Biol. 201 1099 – 111
dc.identifier Stamatoyannopoulos, G. 1994 The Molecular Basis of Bbod Diseases, W. B. Saunders, Philadelphia/London
dc.identifier Tuan, D., Solomon, W., Li, Q., and London, I. M. 1985 The “beta-like-globin” gene domain in human erythroid cells. Proc. Natl. Acad. Sci. U. S. A. 82 6384 – 638
dc.identifier Grosveld, F., van Assendelft, G. B., Greaves, D. R., and Kollias, G. 1987 Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell 51 975 – 98
dc.identifier Stamatoyannopoulos, G. 2005 Control of globin gene expression during development and erythroid differentiation. Exp. Hematol. 33 259 – 27
dc.identifier Raich, N., Enver, T., Nakamoto, B., Josephson, B., Papayannopoulou, T., and Stamatoyannopoulos, G. 1990 Autonomous developmental control of human embryonic globin gene switching in transgenic mice. Science 250 1147 – 114
dc.identifier Behringer, R. R., Ryan, T. M., Palmiter, R. D., Brinster, R. L., and Townes, T. M. 1990 Human gamma- to beta-globin gene switching in transgenic mice. Genes Dev. 4 380 – 38
dc.identifier Enver, T., Raich, N., Ebens, A. J., Papayannopoulou, T., Costantini, F., and Stamatoyannopoulos, G. 1990 Developmental regulation of human fetal-to-adult globin gene switching in transgenic mice. Nature 344 309 – 31
dc.identifier Dillon, N., Trimborn, T., Strouboulis, J., Fraser, P., and Grosveld, F. 1997 The effect of distance on long-range chromatin interactions. Mol. Cell 1 131 – 13
dc.identifier Tanimoto, K., Liu, Q., Bungert, J., and Engel, J. D. 1999 Effects of altered gene order or orientation of the locus control region on human beta-globin gene expression in mice. Nature 398 344 – 34
dc.identifier Hu, X., Eszterhas, S., Pallazzi, N., Bouhassira, E. E., Fields, J., Tanabe, O., Gerber, S. A., Bulger, M., Engel, J. D., Groudine, M., and Fiering, S. 2007 Transcriptional interference among the murine beta-like globin genes. Blood 109 2210 – 221
dc.identifier.uri http://localhost:8080/xmlui/handle/CUHPOERS/117286
dc.description ABSTRACT In primitive erythroid cells of human β‐globin locus transgenic mice (TgM), the locus control region (LCR)‐proximal ε‐ and γ‐globin genes are transcribed, whereas the distal δ‐ and β‐globin genes are silent. It is generally accepted that the β‐globin gene is competitively suppressed by γ‐globin gene expression at this developmental stage. Previously, however, we observed that ε‐globin gene expression was severely attenuated when its distance from the LCR was extended, implying that β‐globin gene might also be silenced because of its great distance from the LCR. Here, to clarify the β‐globin gene silencing mechanism, we established TgM lines carrying either γ‐ or ε‐ plus γ‐globin promoter deletions, without significantly altering the distance between the β‐globin gene and the LCR. Precocious expression of δ‐ and β‐globin genes was observed in primitive erythroid cells of mutant, but not wild‐type TgM, which was most evident when both the ε and γ promoters were deleted. Thus, we clearly demonstrated that the repression of the δ‐ and β‐globin genes in primitive erythroid cells is dominated by competitive silencing by the ε‐ and γ‐globin gene promoters, and that ε‐ and the other β‐like globin genes might be activated by two distinct mechanisms by the LCR.—Okamura, E., Matsuzaki, H., Campbell, A. D., Engel, J. D., Fukamizu, A., Tanimoto, K. All of the human β‐type globin genes compete for LCR enhancer activity in embryonic erythroid cells of yeast artificial chromosome transgenic mice. FASEB J. 23, 4335‐4343 (2009). www.fasebj.org
dc.description Peer Reviewed
dc.description https://deepblue.lib.umich.edu/bitstream/2027.42/154371/1/fsb2fj09137778-sup-0001.pdf
dc.description https://deepblue.lib.umich.edu/bitstream/2027.42/154371/2/fsb2fj09137778.pdf
dc.format application/pdf
dc.format application/pdf
dc.publisher W. B. Saunders
dc.publisher Wiley Periodicals, Inc.
dc.rights IndexNoFollow
dc.subject hemoglobin
dc.subject gene switching
dc.subject chromosome conformation capture
dc.subject 3C
dc.subject Biology
dc.subject Science
dc.title All of the human β‐type globin genes compete for LCR enhancer activity in embryonic erythroid cells of yeast artificial chromosome transgenic mice
dc.type Article


Files in this item

Files Size Format View
fsb2fj09137778.pdf 442.8Kb application/pdf View/Open
fsb2fj09137778-sup-0001.pdf 54.33Kb application/pdf View/Open

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse