dc.creator |
Burghardt, Kyle J. |
|
dc.creator |
Evans, Simon J. |
|
dc.creator |
Wiese, Kristen M. |
|
dc.creator |
Ellingrod, Vicki L. |
|
dc.date |
2015-11-12T21:03:56Z |
|
dc.date |
2016-12-01T14:33:05Z |
|
dc.date |
2015-10 |
|
dc.date.accessioned |
2022-05-19T13:30:40Z |
|
dc.date.available |
2022-05-19T13:30:40Z |
|
dc.identifier |
Burghardt, Kyle J.; Evans, Simon J.; Wiese, Kristen M.; Ellingrod, Vicki L. (2015). "An Untargeted Metabolomics Analysis of Antipsychotic Use in Bipolar Disorder." Clinical and Translational Science 8(5): 432-440. |
|
dc.identifier |
1752-8054 |
|
dc.identifier |
1752-8062 |
|
dc.identifier |
http://hdl.handle.net/2027.42/115928 |
|
dc.identifier |
10.1111/cts.12324 |
|
dc.identifier |
Clinical and Translational Science |
|
dc.identifier |
Fernstrom JD. Branched‐chain amino acids and brain function. J Nutr. 2005; 135 ( 6 Suppl ): 1539s – 1546s. |
|
dc.identifier |
Goldberg JF, Brooks JO, 3rd, Kurita K, Hoblyn JC, Ghaemi SN, Perlis RH, Miklowitz DJ, Ketter TA, Sachs GS, Thase ME. Depressive illness burden associated with complex polypharmacy in patients with bipolar disorder: findings from the STEP‐BD. The J Clin Psychiatr. 2009; 70 ( 2 ): 155 – 162. |
|
dc.identifier |
Westerhuis JA, Hoefsloot HC, Smit S, Vis DJ, Smilde AK, van Velzen EJJ, van Duijnhoven JPM, van Dorsten FA. Assessment of PLSDA cross validation. Metabolomics. 2008; 4 ( 1 ): 81 – 89. |
|
dc.identifier |
Lee IK. The role of pyruvate dehydrogenase kinase in diabetes and obesity. Diab Metabo J. 2014; 38 ( 3 ): 181 – 186. |
|
dc.identifier |
Smith G, Chaussade C, Vickers M, Jensen J, Shepherd P. Atypical antipsychotic drugs induce derangements in glucose homeostasis by acutely increasing glucagon secretion and hepatic glucose output in the rat. Diabetologia. 2008; 51 ( 12 ): 2309 – 2317. |
|
dc.identifier |
Fatemi SH, Reutiman TJ, Folsom TD, Bell C, Nos L, Fried P, Pearce DA, Singh S, Siderovski DP, Willard FS, et al. Chronic olanzapine treatment causes differential expression of genes in frontal cortex of rats as revealed by DNA microarray technique. Neuropsychopharmacology. 2006; 31 ( 9 ): 1888 – 1899. |
|
dc.identifier |
Friedman SD, Dager SR, Parow A, Hirashima F, Demopulos C, Stoll AL, Lyoo IK, Dunner DL, Renshaw PF. Lithium and valproic acid treatment effects on brain chemistry in bipolar disorder. Biol Psychiatr. 2004; 56 ( 5 ): 340 – 348. |
|
dc.identifier |
Pacheco‐Alvarez D, Solorzano‐Vargas RS, Del Rio AL. Biotin in metabolism and its relationship to human disease. Arch Med Res. 2002; 33 ( 5 ): 439 – 447. |
|
dc.identifier |
Brady S, Siegel G, Albers RW, Price D. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. Amsterdam: Academic Press; 2005. |
|
dc.identifier |
Baez‐Saldana A, Zendejas‐Ruiz I, Revilla‐Monsalve C, Islas‐Andrade S, Cárdenas A, Rojas‐Ochoa A, Vilches A, Fernandez‐Mejia C. Effects of biotin on pyruvate carboxylase, acetyl‐CoA carboxylase, propionyl‐CoA carboxylase, and markers for glucose and lipid homeostasis in type 2 diabetic patients and nondiabetic subjects. Am J Clin Nutr. 2004; 79 ( 2 ): 238 – 243. |
|
dc.identifier |
Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, Haqq AM, Shah SH, Arlotto M, Slentz CA, et al. A branched‐chain amino acid‐related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009; 9 ( 4 ): 311 – 326. |
|
dc.identifier |
Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, McCabe E, Lewis GD, Fox CS, Jacques PF, Fernandez C, et al. Metabolite profiles and the risk of developing diabetes. Nat Med. 2011; 17 ( 4 ): 448 – 453. |
|
dc.identifier |
Tortorella A, Monteleone P, Fabrazzo M, Viggiano A, De Luca L, Maj M. Plasma concentrations of amino acids in chronic schizophrenics treated with clozapine. Neuropsychobiology. 2001; 44 ( 4 ): 167 – 171. |
|
dc.identifier |
Scarna A, Gijsman HJ, McTavish SF, Harmer CJ, Cowen PJ, Goodwin GM. Effects of a branched‐chain amino acid drink in mania. Br J Psychiatr. 2003; 182: 210 – 213. |
|
dc.identifier |
Alves I, Staneva G, Tessier C, Salgado GF, Nuss P. The interaction of antipsychotic drugs with lipids and subsequent lipid reorganization investigated using biophysical methods. Biochimica et Biophysica Acta (BBA)‐Biomembranes. 2011; 1808 ( 8 ): 2009 – 2018. |
|
dc.identifier |
Chilton FH, Murphy RC, Wilson BA, Sergeant S, Ainsworth H, Seeds MC, Mathias RA. Diet‐gene interactions and PUFA metabolism: a potential contributor to health disparities and human diseases. Nutrients. 2014; 6 ( 5 ): 1993 – 2022. |
|
dc.identifier |
Johnson GH, Fritsche K. Effect of dietary linoleic acid on markers of inflammation in healthy persons: a systematic review of randomized controlled trials. J Acad Nutr Diet. 2012; 112 ( 7 ): 1029 – 1041. |
|
dc.identifier |
Sárvári AK, Veréb Z, Uray IP, Fésüs L, Balajthy Z. Atypical antipsychotics induce both proinflammatory and adipogenic gene expression in human adipocytes in vitro. Biochem Biophys Res Commun. 2014; 450 ( 4 ): 1383 – 1389. |
|
dc.identifier |
Meyer JM, McEvoy JP, Davis VG, Goff DC, Nasrallah HA, Davis SM, Hsiao JK, Swartz MS, Stroup TS, Lieberman JA. Inflammatory markers in schizophrenia: comparing antipsychotic effects in phase 1 of the clinical antipsychotic trials of intervention effectiveness study. Biol Psychiatr. 2009; 66 ( 11 ): 1013 – 1022. |
|
dc.identifier |
McNamara RK, Lotrich FE. Elevated immune‐inflammatory signaling in mood disorders: a new therapeutic target? Expert Rev Neurother. 2012; 12: 1143 – 1161. |
|
dc.identifier |
Sugino H, Futamura T, Mitsumoto Y, Maeda K, Marunaka Y. Atypical antipsychotics suppress production of proinflammatory cytokines and up‐regulate interleukin‐10 in lipopolysaccharide‐treated mice. Progress Neuro‐Psychopharmacol Biol Psychiatr. 2009; 33 ( 2 ): 303 – 307. |
|
dc.identifier |
Kunz M, Cereser KM, Goi PD, Fries GR, Teixeira AL, Fernandes BS, Belmonte‐de‐Abreu PS, Kauer‐Sant'Anna M, Kapczinski F, Gama CS. Serum levels of IL‐6, IL‐10 and TNF‐alpha in patients with bipolar disorder and schizophrenia: differences in pro‐ and anti‐inflammatory balance. Revista brasileira de psiquiatria. 2011; 33 ( 3 ): 268 – 274. |
|
dc.identifier |
Burghardt KJ, Gardner KN, Johnson JW, Ellingrod VL. Fatty Acid desaturase gene polymorphisms and metabolic measures in schizophrenia and bipolar patients taking antipsychotics. Cardiovasc Psychiatr Neurol. 2013; 2013: 596945. |
|
dc.identifier |
Evans SJ, Ringrose RN, Harrington GJ, Mancuso P, Burant CF, McInnis MG. Dietary intake and plasma metabolomic analysis of polyunsaturated fatty acids in bipolar subjects reveal dysregulation of linoleic acid metabolism. J Psychiatr Res. 2014; 57: 58 – 64. |
|
dc.identifier |
Pillarella J, Higashi A, Alexander GC, Conti R. Trends in use of second‐generation antipsychotics for treatment of bipolar disorder in the United States, 1998–2009. Psychiatr Serv. 2012; 63 ( 1 ): 83 – 86. |
|
dc.identifier |
Glick ID, Berg PH. Time to study discontinuation, relapse, and compliance with atypical or conventional antipsychotics in schizophrenia and related disorders. Int Clin Psychopharmacol. 2002; 17 ( 2 ): 65 – 68. |
|
dc.identifier |
Laursen TM, Wahlbeck K, Hallgren J, Westman J, Ösby U, Alinaghizadeh H, Gissler M, Nordentoft M. Life expectancy and death by diseases of the circulatory system in patients with bipolar disorder or schizophrenia in the Nordic countries. PloS One. 2013; 8 ( 6 ): e67133. |
|
dc.identifier |
Correll CU, Joffe BI, Rosen LM, Sullivan TB, Joffe RT. Cardiovascular and cerebrovascular risk factors and events associated with second‐generation antipsychotic compared to antidepressant use in a non‐elderly adult sample: results from a claims‐based inception cohort study. World Psychiatr. 2015; 14 ( 1 ): 56 – 63. |
|
dc.identifier |
Nasrallah HA. Atypical antipsychotic‐induced metabolic side effects: insights from receptor‐binding profiles. Mol Psychiatr. 2008; 13 ( 1 ): 27 – 35. |
|
dc.identifier |
Miyamoto S, Duncan GE, Marx CE, Lieberman JA. Treatments for schizophrenia: a critical review of pharmacology and mechanisms of action of antipsychotic drugs. Mol Psychiatr. 2005; 10 ( 1 ): 79 – 104. |
|
dc.identifier |
Gao K, Kemp DE, Ganocy SJ, Gajwani P, Xia G, Calabrese JR. Antipsychotic‐induced extrapyramidal side effects in bipolar disorder and schizophrenia: a systematic review. J Clin Psychopharmacol. 2008; 28 ( 2 ): 203 – 209. |
|
dc.identifier |
Nasrallah HA, Churchill CM, Hamdan‐Allan GA. Higher frequency of neuroleptic‐induced dystonia in mania than in schizophrenia. Am J Psychiatr. 1988; 145 ( 11 ): 1455 – 1456. |
|
dc.identifier |
Bly MJ, Taylor SF, Dalack G, Pop‐Busui R, Burghardt KJ, Evans SJ, McInnis MI, Grove TB, Brook RD, Zöllner SK, et al. Metabolic syndrome in bipolar disorder and schizophrenia: dietary and lifestyle factors compared to the general population. Bipolar Disorders. 2014; 16 ( 3 ): 277 – 288. |
|
dc.identifier |
Andreassen OA, Harbo HF, Wang Y, Thompson WK, Schork AJ, Mattingsdal M, Zuber V, Bettella F, Ripke S, Kelsoe JR, et al. Genetic pleiotropy between multiple sclerosis and schizophrenia but not bipolar disorder: differential involvement of immune‐related gene loci. Molr Psychiatr. 2015; 20 ( 2 ): 207 – 214. |
|
dc.identifier |
Kaddurah‐Daouk R, McEvoy J, Baillie R, Lee D, Yao JK, Doraiswamy PM, Krishnan KR. Metabolomic mapping of atypical antipsychotic effects in schizophrenia. Mol Psychiatr. 2007; 12 ( 10 ): 934 – 945. |
|
dc.identifier |
McEvoy J, Baillie RA, Zhu H, et al. Lipidomics reveals early metabolic changes in subjects with schizophrenia: effects of atypical antipsychotics. PloS One. 2013; 8 ( 7 ): e68717. |
|
dc.identifier |
Xuan J, Pan G, Qiu Y, Yang L, Su M, Liu Y, Chen J, Feng G, Fang Y, Jia W, et al. Metabolomic profiling to identify potential serum biomarkers for schizophrenia and risperidone action. J Proteome Res. 2011; 10 ( 12 ): 5433 – 5443. |
|
dc.identifier |
Ellingrod VL, Miller DD, Taylor SF, Moline J, Holman T, Kerr J. Metabolic syndrome and insulin resistance in schizophrenia patients receiving antipsychotics genotyped for the methylenetetrahydrofolate reductase (MTHFR) 677C/T and 1298A/C variants. Schizophr Res. 2008; 98 ( 1–3 ): 47 – 54. |
|
dc.identifier |
Ellingrod VL, Taylor SF, Dalack G, Grove TB, Bly MJ, Brook RD, Zöllner SK, Pop‐Busui R. Risk factors associated with metabolic syndrome in bipolar and schizophrenia subjects treated with antipsychotics: the role of folate pharmacogenetics. J Clin Psychopharmacol. 2012; 32 ( 2 ): 261 – 265. |
|
dc.identifier |
American Psychiatric Association. Diagnostic and statistical manual of mental disorders ( 4th ed., text rev.). Washington, DC: Author; 2000. |
|
dc.identifier |
Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation. 2005; 112 ( 17 ): 2735 – 2752. |
|
dc.identifier |
Subar AF, Kirkpatrick SI, Mittl B, Zimmerman TP, Thompson FE, Bingley C, Willis G, Islam NG, Baranowski T, McNutt S, et al. The Automated Self‐Administered 24‐hour dietary recall (ASA24): a resource for researchers, clinicians, and educators from the National Cancer Institute. J Acad Nutr Diet. 2012; 112 ( 8 ): 1134 – 1137. |
|
dc.identifier |
Overmyer KA, Thonusin C, Qi NR, Burant CF, Evans CR. Impact of Anesthesia and Euthanasia on Metabolomics of Mammalian Tissues: studies in a C57BL/6J Mouse Model. PMC Biophys. 2015; 10 ( 2 ): e0117232. |
|
dc.identifier |
Bruce SJ, Tavazzi I, Parisod V, Rezzi S, Kochhar S, Guy PA. Investigation of human blood plasma sample preparation for performing metabolomics using ultrahigh performance liquid chromatography/mass spectrometry. Anal Chem. 2009; 81 ( 9 ): 3285 – 3296. |
|
dc.identifier |
Bajad SU, Lu W, Kimball EH, Yuan J, Peterson C, Rabinowitz JD. Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography‐tandem mass spectrometry. J Chromatogr. A. 2006; 1125 ( 1 ): 76 – 88. |
|
dc.identifier |
Xia J, Sinelnikov IV, Han B, Wishart DS. MetaboAnalyst 3.0—making metabolomics more meaningful. Nucl Acids Res. 2015; 43 ( W1 ): W251 – 257. |
|
dc.identifier |
Stacklies W, Redestig H, Scholz M, Walther D, Selbig J. pcaMethods–a bioconductor package providing PCA methods for incomplete data. Bioinformatics. 2007; 23 ( 9 ): 1164 – 1167. |
|
dc.identifier |
Hackstadt AJ, Hess AM. Filtering for increased power for microarray data analysis. BMC Bioinformatics. 2009; 10: 11. |
|
dc.identifier |
Szymanska E, Saccenti E, Smilde AK, Westerhuis JA. Double‐check: validation of diagnostic statistics for PLS‐DA models in metabolomics studies. Metabolomics. 2012; 8 ( Suppl. 1 ): 3 – 16. |
|
dc.identifier |
Gallego JA, Bonetti J, Zhang J, Kane JM, Correll CU. Prevalence and correlates of antipsychotic polypharmacy: a systematic review and meta‐regression of global and regional trends from the 1970s to 2009. Schizophr Res. 2012; 138 ( 1 ): 18 – 28. |
|
dc.identifier.uri |
http://localhost:8080/xmlui/handle/CUHPOERS/117381 |
|
dc.description |
BackgroundSecond generation antipsychotic (SGA) use in bipolar disorder is common and has proven effective in short‐term trials. There continues to be a lack of understanding of the mechanisms underlying many of their positive and negative effects in bipolar disorder. This study aimed to describe the metabolite profiles of bipolar subjects treated with SGAs by comparing to metabolite profiles of bipolar subjects treated with lithium, and schizophrenia subjects treated with SGAs.MethodsCross‐sectional, fasting untargeted serum metabolomic profiling was conducted in 82 subjects diagnosed with bipolar I disorder (n = 30 on SGAs and n = 32 on lithium) or schizophrenia (n = 20). Metabolomic profiles of bipolar subjects treated with SGAs were compared to bipolar subjects treated with lithium and schizophrenia subjects treated with SGAs using multivariate methods.ResultsPartial lease square discriminant analysis (PLS‐DA) plots showed separation between bipolar subjects treated with SGAs, bipolar subjects treated with lithium, or schizophrenia subjects treated with SGAs. Top influential metabolite features were associated with several pathways including that of polyunsaturated fatty acids, pyruvate, glucose, and branched chain amino acids.ConclusionsThe findings from this study require further validation in pre‐ and posttreated bipolar and schizophrenia subjects, but suggest that the pharmacometabolome may be diagnosis specific. |
|
dc.description |
Peer Reviewed |
|
dc.description |
http://deepblue.lib.umich.edu/bitstream/2027.42/115928/1/cts12324.pdf |
|
dc.format |
application/pdf |
|
dc.publisher |
Author |
|
dc.publisher |
Wiley Periodicals, Inc. |
|
dc.rights |
IndexNoFollow |
|
dc.subject |
atypical |
|
dc.subject |
antipsychotic |
|
dc.subject |
untargeted |
|
dc.subject |
metabolomics |
|
dc.subject |
bipolar |
|
dc.subject |
Pharmacy and Pharmacology |
|
dc.subject |
Health Sciences |
|
dc.title |
An Untargeted Metabolomics Analysis of Antipsychotic Use in Bipolar Disorder |
|
dc.type |
Article |
|