Description:
Control gains play an important role in the control of a natural or a technical system since they reflect how much resource is required to optimize a certain control objective. This paper is concerned with the controllability of neuronal networks with constraints on the average value of the control gains injected in driver nodes, which are in accordance with engineering and biological backgrounds. In order to deal with the constraints on control gains, the controllability problem is transformed into a constrained optimization problem (COP). The introduction of the constraints on the control gains unavoidably leads to substantial difficulty in finding feasible as well as refining solutions. As such, a modified dynamic hybrid framework (MDyHF) is developed to solve this COP, based on an adaptive differential evolution and the concept of Pareto dominance. By comparing with statistical methods and several recently reported constrained optimization evolutionary algorithms (COEAs), we show that our proposed MDyHF is competitive and promising in studying the controllability of neuronal networks. Based on the MDyHF, we proceed to show the controlling regions under different levels of constraints. It is revealed that we should allocate the control gains economically when strong constraints are considered. In addition, it is found that as the constraints become more restrictive, the driver nodes are more likely to be selected from the nodes with a large degree. The results and methods presented in this paper will provide useful insights into developing new techniques to control a realistic complex network efficiently.