Description:
Medical databases usually contain missing values due the policy of
reducing stress and harm to the patient. In practice missing values has been a
problem mainly due to the necessity to evaluate mathematical equations obtained
by genetic programming. The solution to this problem is to use fill in methods to
estimate the missing values. This paper analyses three fill in methods: (1) attribute
means, (2) conditional means, and (3) random number generation. The methods
are evaluated using sensitivity, specificity, and entropy to explain the exchange in
knowledge of the results. The results are illustrated based on the breast cancer
database. Conditional means produced the best fill in experimental results.