Sangam: A Confluence of Knowledge Streams

Improving the operating efficiency of the more electric aircraft concept through optimised flight procedures

Show simple item record

dc.creator Seresinhe, Ravinka
dc.creator Lawson, Craig
dc.creator Madani, Irfan
dc.date 2018-09-28T08:19:49Z
dc.date 2018-09-28T08:19:49Z
dc.date 2018-09-22
dc.date.accessioned 2022-05-25T16:38:34Z
dc.date.available 2022-05-25T16:38:34Z
dc.identifier Ravinka Seresinhe, Craig Lawson and Irfan Madani. Improving the operating efficiency of the more electric aircraft concept through optimised flight procedures. CEAS Aeronautical Journal, Volume 10, Issue 10, 2019, pp. 463-478
dc.identifier 1869-5582
dc.identifier https://doi.org/10.1007/s13272-018-0327-y
dc.identifier http://dspace.lib.cranfield.ac.uk/handle/1826/13495
dc.identifier.uri http://localhost:8080/xmlui/handle/CUHPOERS/182351
dc.description The increasing awareness of the environmental risks and costs due to the growing demand in aviation has prompted both academic and industrial research into short-term and long-term technologies which could help address the challenges. Among these, the more electric aircraft has been identified as a key design concept which would make aircraft more environmentally friendly and cost effective in the long run. Moreover, the notion of free-flight and optimised trajectories has been identified as a key operational concept which would help curb the environmental effects of aircraft as well as reduce overall costs. The research in this paper presents a methodology in which these two concepts can be coupled to study the benefits of more electric aircraft (MEA) flying optimised trajectories. A wide range of issues from aircraft performance, engine performance, airframe systems operation, power off-take penalties, emission modelling, optimisation algorithms and optimisation frameworks has been addressed throughout the study. The case study is based on a popular short haul flight between London Heathrow and Amsterdam Schiphol. The culmination of the study establishes the advantage of the MEA over conventional aircraft and also addresses the enhanced approach to the classical aircraft trajectory optimisation problem. The study shows that the operation procedures to achieve a minimum fuel burn are significantly different for a conventional aircraft and MEA. Trajectory optimisation reduced the fuel burn by 17.4% for the conventional aircraft and 12.2% for the more electric compared to the respective baseline cases. Within the constraints of the study, the minimum fuel burn trajectory for the MEA consumed 9.9% less fuel than the minimum fuel burn trajectory for the conventional aircraft.
dc.language en
dc.publisher Springer
dc.rights Attribution 4.0 International
dc.rights http://creativecommons.org/licenses/by/4.0/
dc.subject More electric aircraft
dc.subject Aircraft trajectory optimisation
dc.subject Aircraft emissions
dc.subject Aircraft secondary power
dc.title Improving the operating efficiency of the more electric aircraft concept through optimised flight procedures
dc.type Article


Files in this item

Files Size Format View
Improving_opera ... electric_aircraft-2018.pdf 4.162Mb application/pdf View/Open

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse