Sangam: A Confluence of Knowledge Streams

Fusing deep learning and sparse coding for SAR ATR

Show simple item record

dc.creator Kechagias-Stamatis, Odysseas
dc.creator Aouf, Nabil
dc.date 2018-10-19T10:45:18Z
dc.date 2018-10-19T10:45:18Z
dc.date 2018-08-10
dc.date.accessioned 2022-05-25T16:39:05Z
dc.date.available 2022-05-25T16:39:05Z
dc.identifier Odysseas Kechagias-Stamatis and Nabil Aouf. Fusing deep learning and sparse coding for SAR ATR. IEEE Transactions on Aerospace and Electronic Systems, Volume 55, Issue 2, 2018, pp. 785-797
dc.identifier 0018-9251
dc.identifier https://doi.org/10.1109/TAES.2018.2864809
dc.identifier http://dspace.lib.cranfield.ac.uk/handle/1826/13548
dc.identifier.uri http://localhost:8080/xmlui/handle/CUHPOERS/182404
dc.description We propose a multi-modal and multi-discipline data fusion strategy appropriate for Automatic Target Recognition (ATR) on Synthetic Aperture Radar imagery. Our architecture fuses a proposed Clustered version of the AlexNet Convolutional Neural Network with Sparse Coding theory that is extended to facilitate an adaptive elastic net optimization concept. Evaluation on the MSTAR dataset yields the highest ATR performance reported yet which is 99.33% and 99.86% for the 3 and 10-class problems respectively.
dc.language en
dc.publisher IEEE
dc.rights Attribution-NonCommercial 4.0 International
dc.rights http://creativecommons.org/licenses/by-nc/4.0/
dc.subject Automatic Target Recognition
dc.subject Convolutional Neural Networks
dc.subject Data Fusion
dc.subject Sparse Coding
dc.subject Synthetic Aperture Radar
dc.title Fusing deep learning and sparse coding for SAR ATR
dc.type Article


Files in this item

Files Size Format View
Fusing_deep_lea ... oding_for_SAR_ATR-2018.pdf 1.028Mb application/pdf View/Open

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse