Dudina, Dina V.; Korchagin, Michail A.; Gavrilov, Alexander I.; Bulina, Natalia V.; Batraev, Igor S.; Esikov, Maksim A.; Georgarakis, Konstantinos; Kato, Hidemi
Description:
In this work, Ti25Cu75 melt-spun partially amorphous alloy was used as a source of Ti and Cu to synthesize in-situ TiC-Cu nanocomposites. The reaction between the alloy and carbon started during ball milling and continued during Spark Plasma Sintering. At the same time, during ball milling, the alloy experienced phase transformations: crystallization of the amorphous phase was followed by decomposition of TiCu3. Copper crystallites formed during the alloy transformations were the reason for the presence of copper regions 0.5–1 µm in size free from TiC nanoparticles in the sintered composites. The Ti-Cu intermetallics transformed into non-agglomerated TiC 10–20 nm in size distributed in the copper matrix. The hardness of the synthesized TiC-Cu nanocomposites exceeded that of composites obtained by conventional sintering of ball-milled Ti-C-Cu powders.