Sangam: A Confluence of Knowledge Streams

Direct band-gap crossover in epitaxial monolayer boron nitride

Show simple item record

dc.contributor Cassabois, Guillaume
dc.contributor Gil, Bernard
dc.contributor Summerfield, Alex
dc.contributor Novikov, Sergei
dc.contributor Mellor, Chris
dc.contributor Eaves, Laurence
dc.contributor Foxon, C. Thomas
dc.contributor Cheng, Tin S.
dc.contributor Elias, C.
dc.contributor Valvin, P.
dc.contributor Pelini, T.
dc.creator Beton, Peter
dc.date 2019-06-28T10:35:34Z
dc.date 2019-06-28T10:35:34Z
dc.date 2019-06-28
dc.date.accessioned 2022-05-26T10:30:27Z
dc.date.available 2022-05-26T10:30:27Z
dc.identifier https://rdmc.nottingham.ac.uk/handle/internal/7003
dc.identifier http://doi.org/10.17639/nott.6996
dc.identifier.uri http://localhost:8080/xmlui/handle/CUHPOERS/203153
dc.description Hexagonal boron nitride is a large band-gap insulating material which complements the electronic and optical properties of graphene and the transition metal dichalcogenides. However, the intrinsic optical properties of monolayer boron nitride remain largely unexplored. In particular, the theoretically expected crossover to a direct-gap in the limit of the single monolayer is presently not con rmed experimentally. Here, in contrast to the technique of exfoliating few-layer 2D hexagonal boron nitride, we exploit the scalable approach of high-temperature molecular beam epitaxy to grow high-quality monolayer boron nitride on graphite substrates. We combine deep-ultraviolet photoluminescence and reflectance spectroscopy with atomic force microscopy to reveal the presence of a direct gap of energy 6.1 eV in the single atomic layers, thus conforming a crossover to direct gap in the monolayer limit. The giant exciton binding energy in monolayer boron nitride requires selective optical pumping through resonant excitation of phonons. These results on large area monolayer boron nitride demonstrate its potential within the family of van der Waals crystals for photonic and light-matter applications in the deep ultraviolet.
dc.language en
dc.publisher The University of Nottingham
dc.relation 10.1038/s41467-019-10610-5
dc.rights CC-BY
dc.rights https://creativecommons.org/licenses/by/4.0/
dc.subject Boron nitride
dc.subject Atomic force microscopy
dc.subject Molecular beam epitaxy
dc.subject boron nitride, direct gap semiconductor, ultra-violet, monolayer
dc.subject Physical sciences::Physics
dc.subject Q Science::QC Physics::QC350 Optics. Light, including spectroscopy
dc.title Direct band-gap crossover in epitaxial monolayer boron nitride


Files in this item

Files Size Format View
BN116_0001.ibw 6.419Mb application/octet-stream View/Open
BN116_0003.ibw 6.419Mb application/octet-stream View/Open
BN116_0003.ibw 6.419Mb application/octet-stream View/Open
BN116_0007.ibw 6.418Mb application/octet-stream View/Open
BN116_0009.ibw 6.418Mb application/octet-stream View/Open
BN117_0001.ibw 6.420Mb application/octet-stream View/Open
BN118_0003.ibw 6.419Mb application/octet-stream View/Open
BN119_0001.ibw 6.419Mb application/octet-stream View/Open
BN120_0000.ibw 6.419Mb application/octet-stream View/Open
BN121_0002.ibw 6.419Mb application/octet-stream View/Open
BN121_0004.ibw 6.420Mb application/octet-stream View/Open
fig2a_hBN_Bulk.txt 33.66Kb text/plain View/Open
fig2a_HOPG.txt 26.17Kb text/plain View/Open
fig2a_mBN.txt 22.42Kb text/plain View/Open
fig3a_hBN.txt 35.80Kb text/plain View/Open
fig3a_HOPG.txt 33.91Kb text/plain View/Open
fig3a_mBN.txt 34.21Kb text/plain View/Open
fig3b_mBN_i.txt 6.094Kb text/plain View/Open
fig3b_mBN_ii.txt 5.948Kb text/plain View/Open
fig3b_mBN_iii.txt 6.099Kb text/plain View/Open
fig3b_mBN_iv.txt 5.289Kb text/plain View/Open
fig3c.txt 328bytes text/plain View/Open
fig3d.txt 203bytes text/plain View/Open
readme.txt 318bytes text/plain View/Open

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse