This is the final version of the article. Available from Springer Nature via the DOI in this record.
LKB1 is a master kinase that regulates metabolism and growth through adenosine monophosphate-activated protein kinase (AMPK) and 12 other closely related kinases. Liver-specific ablation of LKB1 causes increased glucose production in hepatocytes in vitro and hyperglycaemia in fasting mice in vivo. Here we report that the salt-inducible kinases (SIK1, 2 and 3), members of the AMPK-related kinase family, play a key role as gluconeogenic suppressors downstream of LKB1 in the liver. The selective SIK inhibitor HG-9-91-01 promotes dephosphorylation of transcriptional co-activators CRTC2/3 resulting in enhanced gluconeogenic gene expression and glucose production in hepatocytes, an effect that is abolished when an HG-9-91-01-insensitive mutant SIK is introduced or LKB1 is ablated. Although SIK2 was proposed as a key regulator of insulin-mediated suppression of gluconeogenesis, we provide genetic evidence that liver-specific ablation of SIK2 alone has no effect on gluconeogenesis and insulin does not modulate SIK2 phosphorylation or activity. Collectively, we demonstrate that the LKB1-SIK pathway functions as a key gluconeogenic gatekeeper in the liver.
This work was supported
by the British MRC, the Re´gion Ile-de-France (CORDDIM), Socie´te´ Francophone du
Diabe´te (SFD) and the pharmaceutical companies supporting the Division of Signal
Transduction Therapy Unit (AstraZeneca, Boehringer-Ingelheim, GlaxoSmithKline,
Merck KgaA, Janssen Pharmaceutica and Pfizer). K.P. is supported by the Wellcome Trust PhD Programme for Clinicians (093991/Z/10/Z) and A.M. is a recipient of a
post-doctoral fellowship from the Re´gion Ile-de-France (CORDDIM). This work is
supported by the NIH Grant RO1DK56886 to M.J.B.