dc.creator |
Endara, M-J |
|
dc.creator |
Coley, PD |
|
dc.creator |
Wiggins, NL |
|
dc.creator |
Forrister, DL |
|
dc.creator |
Younkin, GC |
|
dc.creator |
Nicholls, JA |
|
dc.creator |
Pennington, RT |
|
dc.creator |
Dexter, KG |
|
dc.creator |
Kidner, CA |
|
dc.creator |
Stone, GN |
|
dc.creator |
Kursar, TA |
|
dc.date |
2018-11-30T14:41:36Z |
|
dc.date |
2018-02-13 |
|
dc.date |
2018-11-30T14:41:36Z |
|
dc.date.accessioned |
2022-05-27T01:03:32Z |
|
dc.date.available |
2022-05-27T01:03:32Z |
|
dc.identifier |
Vol. 218, pp. 847 - 858 |
|
dc.identifier |
10.1111/nph.15020 |
|
dc.identifier |
http://hdl.handle.net/10871/34944 |
|
dc.identifier |
0028-646X |
|
dc.identifier |
New Phytologist |
|
dc.identifier.uri |
http://localhost:8080/xmlui/handle/CUHPOERS/241951 |
|
dc.description |
This is the author accepted manuscript. The final version is available from Wiley via the DOI in this record |
|
dc.description |
The need for species identification and taxonomic discovery has led to the development of innovative technologies for large‐scale plant identification. DNA barcoding has been useful, but fails to distinguish among many species in species‐rich plant genera, particularly in tropical regions. Here, we show that chemical fingerprinting, or ‘chemocoding’, has great potential for plant identification in challenging tropical biomes.
Using untargeted metabolomics in combination with multivariate analysis, we constructed species‐level fingerprints, which we define as chemocoding. We evaluated the utility of chemocoding with species that were defined morphologically and subject to next‐generation DNA sequencing in the diverse and recently radiated neotropical genus Inga (Leguminosae), both at single study sites and across broad geographic scales.
Our results show that chemocoding is a robust method for distinguishing morphologically similar species at a single site and for identifying widespread species across continental‐scale ranges.
Given that species are the fundamental unit of analysis for conservation and biodiversity research, the development of accurate identification methods is essential. We suggest that chemocoding will be a valuable additional source of data for a quick identification of plants, especially for groups where other methods fall short. |
|
dc.language |
en |
|
dc.publisher |
Wiley for New Phytologist Trust |
|
dc.rights |
© 2018 The Authors. New Phytologist © 2018 New Phytologist Trust |
|
dc.rights |
2019-02-13 |
|
dc.rights |
Under embargo until 13 February 2019 in compliance with publisher policy |
|
dc.rights |
http://www.rioxx.net/licenses/under-embargo-all-rights-reserved |
|
dc.subject |
chemocoding |
|
dc.subject |
Inga |
|
dc.subject |
metabolomics |
|
dc.subject |
species identification |
|
dc.subject |
tropical forests |
|
dc.title |
Chemocoding as an identification tool where morphological- and DNA-based methods fall short: Inga as a case study |
|
dc.type |
Article |
|