Sangam: A Confluence of Knowledge Streams

Structure-Adaptive Large-Scale Convex Optimization Toolbox v1.0

Show simple item record

dc.contributor European Commission
dc.contributor Tang, Junqi
dc.creator Tang, Junqi
dc.date 2019-01-28T16:28:04Z
dc.date 2019-01-28T16:28:04Z
dc.date.accessioned 2023-02-17T20:53:29Z
dc.date.available 2023-02-17T20:53:29Z
dc.identifier Tang, Junqi. (2019). Structure-Adaptive Large-Scale Convex Optimization Toolbox v1.0, [software]. University of Edinburgh. Institute for Digital Communications. https://doi.org/10.7488/ds/2489.
dc.identifier https://hdl.handle.net/10283/3249
dc.identifier https://doi.org/10.7488/ds/2489
dc.identifier.uri http://localhost:8080/xmlui/handle/CUHPOERS/244119
dc.description This toolbox includes the Matlab implementations of the GPIS and Acc-GPIS algorithms for efficiently solving the l_1 constrained least-squares regression and nuclear-norm constrained multivariate regression tasks, proposed in the ICML 2017 paper "Gradient Projection Iterative Sketch for Large-Scale Constrained Least-Squares", as well as the Rest-Katyusha and Adaptive Rest-Katyusha algorithms for the Lasso and elastic-net regularized least-squares regression tasks, proposed in the NeurIPS 2018 paper "Rest-Katyusha: Exploiting the Solution's Structure via Scheduled Restart Schemes".
dc.format application/zip
dc.language eng
dc.publisher University of Edinburgh. Institute for Digital Communications
dc.relation http://proceedings.mlr.press/v70/tang17a.html
dc.relation http://papers.nips.cc/paper/7325-rest-katyusha-exploiting-the-solutions-structure-via-scheduled-restart-schemes
dc.rights Creative Commons Attribution 4.0 International Public License
dc.subject Optimization
dc.subject Machine Learning
dc.subject Big Data
dc.subject Mathematical and Computer Sciences::Machine Learning
dc.title Structure-Adaptive Large-Scale Convex Optimization Toolbox v1.0
dc.type software


Files in this item

Files Size Format View
structure-adapt ... on_matlab_toolbox_v1.0.zip 99.80Kb application/zip View/Open

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse