dc.description |
The frequency and severity of extreme weather events such as flooding, hurricanes/storms and heatwaves are increasing as a result of climate change. There is a need for information to better understand when, where and how these events are
impacting people. However, there are currently limited sources of impact information beyond traditional meteorological observations.
Social sensing, which is the use of unsolicited social media data to better understand real world events, is one method that may provide such information. Social sensing has successfully been used to detect earthquakes, floods, hurricanes, wildfires, heatwaves and other weather hazards. Here social sensing methods are adapted to explore potential for collecting impact information for meteorologists and decision makers concerned with extreme weather events.
After a review of the literature, three experimental studies are presented. Social sensing is shown to be effective for detection of impacts of named storms in the UK and Ireland. Topics of discussion and sentiment are explored in the period before, during and after a storm event. Social sensing is also shown able to detect high-impact rainfall events worldwide, validating results against a manually curated database. Additional events which were not known to this database were found by social sensing.
Finally, social sensing was applied to heatwaves in three European cities. Building on previous work on heatwaves in the UK, USA and Australia, the methods were extended to include impact phrases alongside hazard-related phrases, in three different languages (English, Dutch and Greek).
Overall, social sensing is found to be a good source of impact information for organisations that need to better understand the impacts of extreme weather. The research described in this project has been commercialised for operational use by meteorological agencies in the UK, including the Met Office, Environment Agency and Natural Resources Wales. |
|