Sangam: A Confluence of Knowledge Streams

A Game Theoretic-based Transactive Energy Framework for Distributed Energy Resources

Show simple item record

dc.contributor Electrical Engineering
dc.contributor Broadwater, Robert P.
dc.contributor Beattie, Christopher A.
dc.contributor Abbott, A. Lynn
dc.contributor Centeno, Virgilio A.
dc.contributor Kekatos, Vasileios
dc.creator Bhatti, Bilal Ahmad
dc.date 2021-01-08T09:01:17Z
dc.date 2021-01-08T09:01:17Z
dc.date 2021-01-07
dc.date.accessioned 2023-02-28T17:56:34Z
dc.date.available 2023-02-28T17:56:34Z
dc.identifier vt_gsexam:28621
dc.identifier http://hdl.handle.net/10919/101788
dc.identifier.uri http://localhost:8080/xmlui/handle/CUHPOERS/267291
dc.description Power systems have evolved significantly during the last two decades with the advent of Distributed Energy Resources (DERs) like solar PV. Traditionally, large power plants were considered as the sole source of energy in the power systems. However, DERs connected to the transmission and the distribution systems are creating a paradigm shift from a centralized generation to a distributed one. Though the variable power output from these DERs poses challenges to the reliable operation of the grid, it also presents opportunities to design control and coordination approaches to improve system efficiency and operational reliability. Moreover, building new transmission lines to meet ever-increasing load demand is not always viable. Thus, the industry is leaning towards developing non-wires alternatives. Considering the existing limitations of the transmission system, line congestions, and logistic/economic constraints associated with its capacity expansion, leveraging DERs to supply distribution system loads is attractive and thus capturing the attention of researchers and the electric power industry. The primary objective of this dissertation is to develop a framework that enables DERs to supply local area load by co-simulating the power system and transactive system representations of the network. To realize this objective, a novel distributed optimization and game theory-based network representation is developed that optimally computes the power output of the Home Microgrids/DER aggregators. Moreover, the optimum operational schedules of the DERs within these Home Microgrids/DER aggregators are also computed. The novel electrical-transactive co-simulation ensures that the solution is optimum in the context of power systems i.e. power flow constraints are not violated while the payoffs are maximized for the Home Microgrids/DER aggregators. The transactive mechanism involves two-way iterative signaling. The signaling is modeled as an infinite strategy, multiplayer, non-cooperative game, and a novel theory is developed for the game model. The dissertation also introduces a novel concept of ranking the Home Microgrids/DER aggregators according to their historic performance, thus leading to fairness, higher participation, and transparency. Significant advantages offered by the framework include consumption of local generation, transmission upgrade deferral, mitigation of line congestions in peak periods, and reduced transmission systems losses.
dc.description Doctor of Philosophy
dc.description In past, electricity was primarily produced by the large fossil fuel-based and nuclear power plants, usually located farther away from the populated areas where the bulk of the electricity consumption occurs. The electricity from the power plants is carried by the transmission lines to the populated areas where it is distributed to end-users via a distribution network. However, during the last two decades, issues like global warming and depleting fossil fuels have led to the development and increased adoption of renewable energy resources like solar photovoltaics (PV), wind turbines, etc. These resources are commonly known as Distributed Energy Resources (DERs), and they are connected to both the transmission and the distribution systems. Initially, they were mainly used to supply the load within the facility in which they are installed. However, the electric load (demand) continues to grow while adding new fossil fuel-based plants and transmission lines are becoming logistically/economically challenging. Thus, researchers are working on developing techniques that can enable DERs to supply the loads in the distribution system to which they are connected. This dissertation develops a method to use DERs for load support in the distribution systems. Specifically, the buildings that house the DERs can use the energy generated by the DERs to supply the local load (building load), and once the total generation exceeds the load demand, the building can inject the power into the distribution system to support the local area load. The proposed framework considers the electric network constraints like limits of lines supplying the power and limits of the transformers. The proposed work also develops a new method to maximize the benefit (in terms of profit) for the DER owners. A ranking system is introduced for the DER owners that enhances the transparency and fairness of the process. The key benefits offered by the proposed work include reduced losses in the transmission system, more energy consumed closer to the point of generation, and avoidance of transmission line and large central generation additions.
dc.format ETD
dc.format application/pdf
dc.publisher Virginia Tech
dc.rights In Copyright
dc.rights http://rightsstatements.org/vocab/InC/1.0/
dc.subject Transactive energy
dc.subject Co-simulation
dc.subject Game Theory
dc.subject Microgrids
dc.subject Distributed Energy Resources
dc.title A Game Theoretic-based Transactive Energy Framework for Distributed Energy Resources
dc.type Dissertation


Files in this item

Files Size Format View
Bhatti_B_D_2021.pdf 2.828Mb application/pdf View/Open

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse