Sangam: A Confluence of Knowledge Streams

Gauss-type formulas for linear functionals

Show simple item record

dc.contributor Mathematics
dc.creator Chen, Jih-Hsiang
dc.date 2017-01-30T21:25:15Z
dc.date 2017-01-30T21:25:15Z
dc.date 1982
dc.date.accessioned 2023-03-01T08:09:40Z
dc.date.available 2023-03-01T08:09:40Z
dc.identifier http://hdl.handle.net/10919/74845
dc.identifier.uri http://localhost:8080/xmlui/handle/CUHPOERS/276506
dc.description We give a method, by solving a nonlinear system of equations, for Gauss harmonic interpolation formulas which are useful for approximating, the solution of the Dirichlet problem. We also discuss approximations for integrals of the form I(f) = (1/2πi) ∫<sub>L</sub> (f(z)/(z-α)) dz. Our approximations shall be of the form Q(f) = Σ<sub>k=1</sub><sup>n</sup> A<sub>k</sub>f(τ<sub>k</sub>). We characterize the nodes τ₁, τ₂, …, τ<sub>n</sub>, to get the maximum precision for our formulas. Finally, we propose a general problem of approximating for linear functionals; our results need further development.
dc.description Ph. D.
dc.format iv, 61, [1] leaves
dc.format application/pdf
dc.format application/pdf
dc.language en_US
dc.publisher Virginia Polytechnic Institute and State University
dc.relation OCLC# 9185708
dc.rights In Copyright
dc.rights http://rightsstatements.org/vocab/InC/1.0/
dc.subject LD5655.V856 1982.C546
dc.subject Harmonic functions
dc.subject Approximation theory
dc.title Gauss-type formulas for linear functionals
dc.type Dissertation
dc.type Text


Files in this item

Files Size Format View
LD5655.V856_1982.C546.pdf 2.256Mb application/pdf View/Open

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse