dc.contributor | Mathematics | |
dc.creator | Chen, Jih-Hsiang | |
dc.date | 2017-01-30T21:25:15Z | |
dc.date | 2017-01-30T21:25:15Z | |
dc.date | 1982 | |
dc.date.accessioned | 2023-03-01T08:09:40Z | |
dc.date.available | 2023-03-01T08:09:40Z | |
dc.identifier | http://hdl.handle.net/10919/74845 | |
dc.identifier.uri | http://localhost:8080/xmlui/handle/CUHPOERS/276506 | |
dc.description | We give a method, by solving a nonlinear system of equations, for Gauss harmonic interpolation formulas which are useful for approximating, the solution of the Dirichlet problem. We also discuss approximations for integrals of the form I(f) = (1/2πi) ∫<sub>L</sub> (f(z)/(z-α)) dz. Our approximations shall be of the form Q(f) = Σ<sub>k=1</sub><sup>n</sup> A<sub>k</sub>f(τ<sub>k</sub>). We characterize the nodes τ₁, τ₂, …, τ<sub>n</sub>, to get the maximum precision for our formulas. Finally, we propose a general problem of approximating for linear functionals; our results need further development. | |
dc.description | Ph. D. | |
dc.format | iv, 61, [1] leaves | |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.language | en_US | |
dc.publisher | Virginia Polytechnic Institute and State University | |
dc.relation | OCLC# 9185708 | |
dc.rights | In Copyright | |
dc.rights | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | LD5655.V856 1982.C546 | |
dc.subject | Harmonic functions | |
dc.subject | Approximation theory | |
dc.title | Gauss-type formulas for linear functionals | |
dc.type | Dissertation | |
dc.type | Text |
Files | Size | Format | View |
---|---|---|---|
LD5655.V856_1982.C546.pdf | 2.256Mb | application/pdf |
View/ |