Sangam: A Confluence of Knowledge Streams

Monomer synthesis and polymer pyrolysis

Show simple item record

dc.contributor Chemistry
dc.contributor McGrath, James E.
dc.contributor Castagnoli, Neal Jr.
dc.contributor Riffle, Judy S.
dc.contributor Long, Gary L.
dc.contributor Merola, Joseph S.
dc.contributor Marand, Hervé L.
dc.creator Grubbs, Harvey J.
dc.date 2014-03-14T21:11:35Z
dc.date 2014-03-14T21:11:35Z
dc.date 1993-12-05
dc.date 2007-05-22
dc.date 2007-05-22
dc.date 2007-05-22
dc.date.accessioned 2023-03-01T08:10:06Z
dc.date.available 2023-03-01T08:10:06Z
dc.identifier etd-05222007-091414
dc.identifier http://hdl.handle.net/10919/37897
dc.identifier http://scholar.lib.vt.edu/theses/available/etd-05222007-091414/
dc.identifier.uri http://localhost:8080/xmlui/handle/CUHPOERS/276572
dc.description Methods for the large scale preparation and purification of bis( 4-aminopheny 1)-1- phenyl-2,2,2-trifluoroethane (3F-diamine) and bis( 4-hydroxyphenyl)-1-phenyl-2,2,2- trifluoroethane (3F bis-phenol) have been developed. Spectroscopic characterization of by-products was used to develop a mechanistic understanding for synthetic design and to formulate purification techniques needed to produce monomer grade products. Utilizing the preparative methods represented in the present work, it was possible to obtain sufficiently pure 3F-diamine to allow the synthesis of soluble, end-capped, fully cyclized polyimides with glass transition temperatures greater than 430°C. The direct preparation of 3F bis-phenol from phenol and trifluoroacetophenone by trifluoromethanesulfonic acid catalyzed hydroxy alkylation was optimized to produce monomer grade 3F bisphenol. Previously reported methods were less direct and produced lower purity product. Current research efforts are exploring the utility of this monomer system for the preparation of novel poly(arylene ethers), polycarbonates, and polyesters. Bis(4-hydroxy-3- aminophenyI)-1-phenyl-2,2,2-trifluoroethane [3F-bis(aminophenol)] has recently been successfully prepared from 3F-phenol. Soluble, high glass transition temperature, fully-cyclized polybenzoxazoles have been obtained from 3F-bis(aminophenol). The synthesis and characterization of polymer systems containing the phosphine oxide unit as an integral part of the backbone continue to be areas of active research. To date the majority of research activity has centered on the synthesis and features of poly(arylene ether phosphine oxide) (PEPO). All PEPOs gave significant amounts of phosphorus-containing char at temperatures where other engineering polymers are completely volatilized. This behavior was related to the superior self-extinguishing behavior of all the phosphorus containing systems. A detailed pyrolytic degradation study of the phosphorus containing PEPO system was carried out. The study utilized analytical techniques such as pyrolysis-gas chromatography-mass spectroscopy and neutron activation analysis. To continue the exploration of the phosphine oxide systems, the synthesis and characterization of a novel phosphorus containing diamine, bis( 4-amino-phenyl) phenylphosphine oxide, has been completed. Further research is in progress preparing phosphine oxide based polyimides from this diamine. Synthesis of bis(4-hydroxyphenyl)phenylphosphine oxide and additional phosphine oxide intermediates are also reported.
dc.description Ph. D.
dc.format xx, 269 leaves
dc.format BTD
dc.format application/pdf
dc.format application/pdf
dc.language en
dc.publisher Virginia Tech
dc.relation OCLC# 30935515
dc.relation LD5655.V856_1993.G783.pdf
dc.rights In Copyright
dc.rights http://rightsstatements.org/vocab/InC/1.0/
dc.subject LD5655.V856 1993.G783
dc.subject Heat resistant plastics -- Synthesis
dc.subject Monomers -- Synthesis
dc.subject Polymers -- Thermal properties
dc.title Monomer synthesis and polymer pyrolysis
dc.type Dissertation
dc.type Text


Files in this item

Files Size Format View
LD5655.V856_1993.G783.pdf 9.462Mb application/pdf View/Open

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse