Show simple item record

dc.contributor Mathematics
dc.contributor Green, Edward L.
dc.contributor Farkas, Daniel R.
dc.contributor Thomson, James E.
dc.contributor McCoy, Robert A.
dc.contributor Arnold, Jimmy T.
dc.creator Gokhale, Dhananjay R.
dc.date 2014-03-14T21:19:09Z
dc.date 2014-03-14T21:19:09Z
dc.date 1992-04-05
dc.date 2005-09-20
dc.date 2005-09-20
dc.date 2005-09-20
dc.date.accessioned 2023-03-01T08:11:22Z
dc.date.available 2023-03-01T08:11:22Z
dc.identifier etd-09202005-091014
dc.identifier http://hdl.handle.net/10919/39431
dc.identifier http://scholar.lib.vt.edu/theses/available/etd-09202005-091014/
dc.identifier.uri http://localhost:8080/xmlui/handle/CUHPOERS/276747
dc.description Let <i>R</i> be a commutative ring, <i>I</i> be an ideal in <i>R</i> and let <i>M</i> be a <i>R/ I</i> -module. In this thesis we construct a <i>R/ I</i> -projective resolution of <i>M</i> using given <i>R</i>-projective resolutions of <i>M</i> and <i>I</i>. As immediate consequences of our construction we give descriptions of the canonical maps Ext<sub>R/I</sub><i>(M,N)</i> -> Ext<sub>R</sub><i>(M,N)</i> and Tor<sup>R</sup><sub>N</sub><i>(M, N)</i> -> Tor<sup>R/I</sup><sub>n</sub><i>(M, N)</i> for a <i>R/I</i> module <i>N</i> and we give a new proof of a theorem of Gulliksen [6] which states that if <i>I</i> is generated by a regular sequence of length r then ∐∞<sub>n=o</sub> Tor<sup>R/I</sup><sub>n</sub> <i>(M, N)</i> is a graded module over the polynomial ring </i>R/ I</i> [X₁. .. X<sub>r</sub>] with deg X<sub>i</sub> = -2, 1 ≤ i ≤ r. If <i>I</i> is generated by a regular element and if the <i>R</i>-projective dimension of <i>M</i> is finite, we show that <i>M</i> has a <i>R/ I</i>-projective resolution which is eventually periodic of period two. This generalizes a result of Eisenbud [3]. In the case when <i>R</i> = (<i>R</i>, m) is a Noetherian local ring and <i>M</i> is a finitely generated <i>R/ I</i> -module, we discuss the minimality of the constructed resolution. If it is minimal we call (<i>M, I</i>) a Golod pair over <i>R</i>. We give a direct proof of a theorem of Levin [10] which states thdt if (<i>M,I</i>) is a Golod pair over <i>R</i> then (Ω<sup>n</sup><sub>R/I</sub>R/I(M),I) is a Golod pair over <i>R</i> where Ω<sup>n</sup><sub>R/I</sub>R/I(M) is the nth syzygy of the constructed <i>R/ I</i> -projective resolution of <i>M</i>. We show that the converse of the last theorem is not true and if (Ω¹<sub>R/I</sub>R/I(M),I) is a Golod pair over <i>R</i> then we give a necessary and sufficient condition for (<i>M, I</i>) to be a Golod pair over <i>R</i>. Finally we prove that if (<i>M, I</i>) is a Golod pair over <i>R</i> and if a ∈ <i>I</i> - m<i>I</i> is a regular element in </i>R</i> then (<i>M</i>, (a)) and (1/(a), (a)) are Golod pairs over <i>R</i> and (<i>M,I</i>/(a)) is a Golod pair over <i>R</i>/(a). As a corrolary of this result we show that if the natural map π : <i>R</i> → <i>R/1</i> is a Golod homomorphism ( this means (<i>R</i>/m, <i>I</i>) is a Golod pair over <i>R</i> ,Levin [8]), then the natural maps π₁ : <i>R</i> → <i>R</i>/(a) and π₂ : <i>R</i>/(a) → <i>R/1</i> are Golod homomorphisms.
dc.description Ph. D.
dc.format v, 47 leaves
dc.format BTD
dc.format application/pdf
dc.format application/pdf
dc.language en
dc.publisher Virginia Tech
dc.relation OCLC# 26121360
dc.relation LD5655.V856_1992.G643.pdf
dc.rights In Copyright
dc.rights http://rightsstatements.org/vocab/InC/1.0/
dc.subject LD5655.V856 1992.G643
dc.subject Commutative rings
dc.subject Homomorphisms (Mathematics)
dc.subject Projective modules (Algebra)
dc.title Resolutions mod I, Golod pairs
dc.type Dissertation
dc.type Text


Files in this item

Files Size Format View
LD5655.V856_1992.G643.pdf 1.314Mb application/pdf View/Open

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse