dc.contributor |
Massachusetts Institute of Technology. Department of Mathematics |
|
dc.creator |
Lusztig, George |
|
dc.creator |
Yun, Zhiwei |
|
dc.date |
2022-01-05T18:55:38Z |
|
dc.date |
2020-04-23T17:31:38Z |
|
dc.date |
2021-09-09T17:51:05Z |
|
dc.date |
2022-01-05T18:55:38Z |
|
dc.date |
2013-07 |
|
dc.date |
2012-03 |
|
dc.date |
2020-03-31T17:07:08Z |
|
dc.date.accessioned |
2023-03-01T08:37:59Z |
|
dc.date.available |
2023-03-01T08:37:59Z |
|
dc.identifier |
2320-3110 |
|
dc.identifier |
0970-1249 |
|
dc.identifier |
https://hdl.handle.net/1721.1/124838.3 |
|
dc.identifier |
Lusztig, George and Zhiwei Yun. “A (-q)-analogue of weight multiplicities.” Journal of the Ramanujan Mathematical Society 28 (July 2013): 311-340. |
|
dc.identifier.uri |
http://localhost:8080/xmlui/handle/CUHPOERS/277151 |
|
dc.description |
We prove a conjecture in [L11] stating that certain polynomials P-Y(sigma),(w)(q) introduced in [LV11] for twisted involutions in an affine Weyl group give ( -q)-analogues of weight multiplicities of the Langlands dual group G. We also prove that the signature of a naturally defined hermitian form on each irreducible representation of e can be expressed in terms of these polynomials P-Y(sigma),(w)(q). |
|
dc.description |
National Science Foundation (U.S.) (Grant DMS-0758262) |
|
dc.description |
National Science Foundation (U.S.) (Grant DMS-0969470) |
|
dc.format |
application/octet-stream |
|
dc.language |
en |
|
dc.relation |
http://www.mathjournals.org/jrms/2013-028-000/2013-28A-SPL-014.html |
|
dc.relation |
Journal of the Ramanujan Mathematical Society |
|
dc.rights |
Creative Commons Attribution-Noncommercial-Share Alike |
|
dc.rights |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
|
dc.source |
arXiv |
|
dc.title |
A (-q)-analogue of weight multiplicities |
|
dc.type |
Article |
|
dc.type |
http://purl.org/eprint/type/JournalArticle |
|