Sangam: A Confluence of Knowledge Streams

Symbol acquisition for probabilistic high-level planning

Show simple item record

dc.contributor Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
dc.contributor Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor Kaelbling, Leslie P
dc.contributor Lozano-Perez, Tomas
dc.creator Konidaris, George
dc.creator Kaelbling, Leslie P
dc.creator Lozano-Perez, Tomas
dc.date 2018-06-22T18:13:03Z
dc.date 2018-06-22T18:13:03Z
dc.date 2015-07
dc.date.accessioned 2023-03-01T18:10:33Z
dc.date.available 2023-03-01T18:10:33Z
dc.identifier 978-1-57735-738-4
dc.identifier http://hdl.handle.net/1721.1/116532
dc.identifier Konidaris, George et al. "Symbol Acquisition for Probabilistic High-Level Planning" Proceedings of the Twenty Fourth International Joint Conference on Artificial Intelligence (IJCAI),Buenos Aires, Argentina, AAAI Press / International Joint Conferences on Artificial Intelligence, 2015.
dc.identifier https://orcid.org/0000-0001-6054-7145
dc.identifier https://orcid.org/0000-0002-8657-2450
dc.identifier.uri http://localhost:8080/xmlui/handle/CUHPOERS/279034
dc.description We introduce a framework that enables an agent to autonomously learn its own symbolic representation of a low-level, continuous environment. Propositional symbols are formalized as names for probability distributions, providing a natural means of dealing with uncertain representations and probabilistic plans. We determine the symbols that are sufficient for computing the probability with which a plan will succeed, and demonstrate the acquisition of a symbolic representation in a computer game domain.
dc.description National Science Foundation (U.S.) (grant 1420927)
dc.description United States. Office of Naval Research (grant N00014-14-1-0486)
dc.description United States. Air Force. Office of Scientific Research (grant FA23861014135)
dc.description United States. Army Research Office (grant W911NF1410433)
dc.description MIT Intelligence Initiative
dc.format application/pdf
dc.language en_US
dc.publisher AAAI Press / International Joint Conferences on Artificial Intelligence
dc.relation http://dl.acm.org/citation.cfm?id=2832754
dc.relation 24th International Joint Conference on Artificial Intelligence (IJCAI 2015)
dc.rights Creative Commons Attribution-Noncommercial-Share Alike
dc.rights http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.source MIT Web Domain
dc.title Symbol acquisition for probabilistic high-level planning
dc.type Article
dc.type http://purl.org/eprint/type/ConferencePaper


Files in this item

Files Size Format View
Lozano-Perez_Symbol acquisition.pdf 1.202Mb application/pdf View/Open

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse