dc.contributor |
Massachusetts Institute of Technology. Department of Mathematics |
|
dc.contributor |
Etingof, Pavel I |
|
dc.contributor |
Walton, Chelsea |
|
dc.creator |
Etingof, Pavel I |
|
dc.creator |
Walton, Chelsea |
|
dc.date |
2017-06-30T22:45:06Z |
|
dc.date |
2017-06-30T22:45:06Z |
|
dc.date |
2013-10 |
|
dc.date |
2013-01 |
|
dc.date.accessioned |
2023-03-01T18:11:19Z |
|
dc.date.available |
2023-03-01T18:11:19Z |
|
dc.identifier |
0001-8708 |
|
dc.identifier |
1090-2082 |
|
dc.identifier |
http://hdl.handle.net/1721.1/110408 |
|
dc.identifier |
Etingof, Pavel, and Chelsea Walton. “Semisimple Hopf Actions on Commutative Domains.” Advances in Mathematics 251 (January 2014): 47–61. |
|
dc.identifier |
https://orcid.org/0000-0002-0710-1416 |
|
dc.identifier.uri |
http://localhost:8080/xmlui/handle/CUHPOERS/279083 |
|
dc.description |
Let H be a semisimple (so, finite dimensional) Hopf algebra over an algebraically closed field k of characteristic zero and let A be a commutative domain over k. We show that if A arises as an H-module algebra via an inner faithful H-action, then H must be a group algebra. This answers a question of E. Kirkman and J. Kuzmanovich and partially answers a question of M. Cohen.
The main results of this article extend to working over k of positive characteristic. On the other hand, we obtain results on Hopf actions on Weyl algebras as a consequence of the main theorem. |
|
dc.description |
National Science Foundation (U.S.) (grant DMS-1000173) |
|
dc.description |
National Science Foundation (U.S.) (grant DMS-1102548) |
|
dc.format |
application/pdf |
|
dc.language |
en_US |
|
dc.publisher |
Elsevier |
|
dc.relation |
http://dx.doi.org/10.1016/j.aim.2013.10.008 |
|
dc.relation |
Advances in Mathematics |
|
dc.rights |
Creative Commons Attribution-NonCommercial-NoDerivs License |
|
dc.rights |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
|
dc.source |
arXiv |
|
dc.title |
Semisimple Hopf actions on commutative domains |
|
dc.type |
Article |
|
dc.type |
http://purl.org/eprint/type/JournalArticle |
|