Sangam: A Confluence of Knowledge Streams

Semisimple Hopf actions on commutative domains

Show simple item record

dc.contributor Massachusetts Institute of Technology. Department of Mathematics
dc.contributor Etingof, Pavel I
dc.contributor Walton, Chelsea
dc.creator Etingof, Pavel I
dc.creator Walton, Chelsea
dc.date 2017-06-30T22:45:06Z
dc.date 2017-06-30T22:45:06Z
dc.date 2013-10
dc.date 2013-01
dc.date.accessioned 2023-03-01T18:11:19Z
dc.date.available 2023-03-01T18:11:19Z
dc.identifier 0001-8708
dc.identifier 1090-2082
dc.identifier http://hdl.handle.net/1721.1/110408
dc.identifier Etingof, Pavel, and Chelsea Walton. “Semisimple Hopf Actions on Commutative Domains.” Advances in Mathematics 251 (January 2014): 47–61.
dc.identifier https://orcid.org/0000-0002-0710-1416
dc.identifier.uri http://localhost:8080/xmlui/handle/CUHPOERS/279083
dc.description Let H be a semisimple (so, finite dimensional) Hopf algebra over an algebraically closed field k of characteristic zero and let A be a commutative domain over k. We show that if A arises as an H-module algebra via an inner faithful H-action, then H must be a group algebra. This answers a question of E. Kirkman and J. Kuzmanovich and partially answers a question of M. Cohen. The main results of this article extend to working over k of positive characteristic. On the other hand, we obtain results on Hopf actions on Weyl algebras as a consequence of the main theorem.
dc.description National Science Foundation (U.S.) (grant DMS-1000173)
dc.description National Science Foundation (U.S.) (grant DMS-1102548)
dc.format application/pdf
dc.language en_US
dc.publisher Elsevier
dc.relation http://dx.doi.org/10.1016/j.aim.2013.10.008
dc.relation Advances in Mathematics
dc.rights Creative Commons Attribution-NonCommercial-NoDerivs License
dc.rights http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.source arXiv
dc.title Semisimple Hopf actions on commutative domains
dc.type Article
dc.type http://purl.org/eprint/type/JournalArticle


Files in this item

Files Size Format View
Eingof_Semisimple Hopf.pdf 225.8Kb application/pdf View/Open

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse