Sangam: A Confluence of Knowledge Streams

LEHN’S FORMULA IN CHOW AND CONJECTURES OF BEAUVILLE AND VOISIN

Show simple item record

dc.creator Maulik, Davesh
dc.creator Neguţ, Andrei
dc.date 2021-10-27T20:22:25Z
dc.date 2021-10-27T20:22:25Z
dc.date 2020
dc.date 2021-05-24T17:38:31Z
dc.date.accessioned 2023-03-01T18:12:08Z
dc.date.available 2023-03-01T18:12:08Z
dc.identifier https://hdl.handle.net/1721.1/135199
dc.identifier.uri http://localhost:8080/xmlui/handle/CUHPOERS/279136
dc.description © The Author(s) 2020. Published by Cambridge University Press. The Beauville-Voisin conjecture for a hyperkähler manifold states that the subring of the Chow ring generated by divisor classes and Chern characters of the tangent bundle injects into the cohomology ring of. We prove a weak version of this conjecture when is the Hilbert scheme of points on a K3 surface for the subring generated by divisor classes and tautological classes. This in particular implies the weak splitting conjecture of Beauville for these geometries. In the process, we extend Lehn's formula and the Li-Qin-Wang algebra action from cohomology to Chow groups for the Hilbert scheme of an arbitrary smooth projective surface.
dc.format application/pdf
dc.language en
dc.publisher Cambridge University Press (CUP)
dc.relation 10.1017/S1474748020000377
dc.relation Journal of the Institute of Mathematics of Jussieu
dc.rights Creative Commons Attribution-Noncommercial-Share Alike
dc.rights http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.source arXiv
dc.title LEHN’S FORMULA IN CHOW AND CONJECTURES OF BEAUVILLE AND VOISIN
dc.type Article
dc.type http://purl.org/eprint/type/JournalArticle


Files in this item

Files Size Format View
1904.05262.pdf 500.8Kb application/pdf View/Open

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse