Sangam: A Confluence of Knowledge Streams

Myeloid ABCG1 Deficiency Enhances Apoptosis and Initiates Efferocytosis in Bronchoalveolar Lavage Cells of Murine Multi-Walled Carbon Nanotube-Induced Granuloma Model

Show simple item record

dc.creator Soliman, Eman
dc.creator Bhalla, Sophia
dc.creator Elhassanny, Ahmed E. M.
dc.creator Malur, Anagha
dc.creator Ogburn, David
dc.creator Leffler, Nancy
dc.creator Malur, Achut G.
dc.creator Thomassen, Mary Jane
dc.date 2022-01-04T13:51:19Z
dc.date 2022-01-04T13:51:19Z
dc.date 2021-12-21
dc.date 2021-12-23T15:06:38Z
dc.date.accessioned 2023-03-01T18:53:03Z
dc.date.available 2023-03-01T18:53:03Z
dc.identifier Soliman, E.; Bhalla, S.; Elhassanny, A.E.M.; Malur, A.; Ogburn, D.; Leffler, N.; Malur, A.G.; Thomassen, M.J. Myeloid ABCG1 Deficiency Enhances Apoptosis and Initiates Efferocytosis in Bronchoalveolar Lavage Cells of Murine Multi-Walled Carbon Nanotube-Induced Granuloma Model. Int. J. Mol. Sci. 2021, 23, 47.
dc.identifier http://hdl.handle.net/10919/107342
dc.identifier https://doi.org/10.3390/ijms23010047
dc.identifier.uri http://localhost:8080/xmlui/handle/CUHPOERS/281684
dc.description The use of carbon nanotubes has increased in the past few decades. Carbon nanotubes are implicated in the pathogenesis of pulmonary sarcoidosis, a chronic granulomatous inflammatory condition. We developed a murine model of chronic granulomatous inflammation using multiwall carbon nanotubes (MWCNT) to investigate mechanisms of granuloma formation. Using this model, we demonstrated that myeloid deficiency of ATP-binding cassette (ABC) cholesterol transporter (ABCG1) promotes granuloma formation and fibrosis with MWCNT instillation; however, the mechanism remains unclear. Our previous studies showed that MWCNT induced apoptosis in bronchoalveolar lavage (BAL) cells of wild-type (C57BL/6) mice. Given that continual apoptosis causes persistent severe lung inflammation, we hypothesized that ABCG1 deficiency would increase MWCNT-induced apoptosis thereby promoting granulomatous inflammation and fibrosis. To test our hypothesis, we utilized myeloid-specific ABCG1 knockout (ABCG1 KO) mice. Our results demonstrate that MWCNT instillation enhances pulmonary fibrosis in ABCG1 KO mice compared to wild-type controls. Enhanced fibrosis is indicated by increased trichrome staining and transforming growth factor-beta (TGF-β) expression in lungs, together with an increased expression of TGF-β related signaling molecules, interleukin-13 (IL-13) and Smad-3. MWCNT induced more apoptosis in BAL cells of ABCG1 KO mice. Initiation of apoptosis is most likely mediated by the extrinsic pathway since caspase 8 activity and Fas expression are significantly higher in MWCNT instilled ABCG1 KO mice compared to the wild type. In addition, TUNEL staining shows that ABCG1 KO mice instilled with MWCNT have a higher percentage of TUNEL positive BAL cells and more efferocytosis than the WT control. Furthermore, BAL cells of ABCG1 KO mice instilled with MWCNT exhibit an increase in efferocytosis markers, milk fat globule-EGF factor 8 (MFG-E8) and integrin β3. Therefore, our observations suggest that ABCG1 deficiency promotes pulmonary fibrosis by MWCNT, and this effect may be due to an increase in apoptosis and efferocytosis in BAL cells.
dc.description Published version
dc.format application/pdf
dc.format application/pdf
dc.language en
dc.publisher MDPI
dc.rights Creative Commons Attribution 4.0 International
dc.rights http://creativecommons.org/licenses/by/4.0/
dc.title Myeloid ABCG1 Deficiency Enhances Apoptosis and Initiates Efferocytosis in Bronchoalveolar Lavage Cells of Murine Multi-Walled Carbon Nanotube-Induced Granuloma Model
dc.title International Journal of Molecular Science
dc.type Article - Refereed
dc.type Text


Files in this item

Files Size Format View
ijms-23-00047-v2.pdf 30.16Mb application/pdf View/Open

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse